(function(e){if("function"==typeof bootstrap)bootstrap("fernet",e);else if("object"==typeof exports)module.exports=e();else if("function"==typeof define&&define.amd)define(e);else if("undefined"!=typeof ses){if(!ses.ok())return;ses.makeFernet=e}else"undefined"!=typeof window?window.fernet=e():global.fernet=e()})(function(){var define,ses,bootstrap,module,exports; return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o 0) { if (timeDiff > this.ttl) { throw new Error("Invalid Token: TTL"); } if (((currentTime / 1000) + this.maxClockSkew) < timeInt) { throw new Error("far-future timestamp"); } } this.ivHex = tokenString.slice(timeOffset, ivOffset); this.iv = fernet.Hex.parse(this.ivHex); this.cipherTextHex = tokenString.slice(ivOffset, hmacOffset); this.cipherText = fernet.Hex.parse(this.cipherTextHex); this.hmacHex = tokenString.slice(hmacOffset); var decodedHmac = fernet.createHmac(this.secret.signingKey, fernet.timeBytes(this.time), this.iv, this.cipherText); var decodedHmacHex = decodedHmac.toString(fernet.Hex); var accum = 0 for (var i = 0; i < 64; i++) { accum += decodedHmacHex.charCodeAt(i) ^ this.hmacHex.charCodeAt(i) } if (accum != 0) throw new Error("Invalid Token: HMAC"); this.message = fernet.decryptMessage(this.cipherText, this.secret.encryptionKey, this.iv) return this.message; } } return Token; } //exports = module.exports = Token; },{"../fernet":1}],4:[function(require,module,exports){ (function (exports) { 'use strict'; var lookup = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; function b64ToByteArray(b64) { var i, j, l, tmp, placeHolders, arr; if (b64.length % 4 > 0) { throw 'Invalid string. Length must be a multiple of 4'; } // the number of equal signs (place holders) // if there are two placeholders, than the two characters before it // represent one byte // if there is only one, then the three characters before it represent 2 bytes // this is just a cheap hack to not do indexOf twice placeHolders = b64.indexOf('='); placeHolders = placeHolders > 0 ? b64.length - placeHolders : 0; // base64 is 4/3 + up to two characters of the original data arr = [];//new Uint8Array(b64.length * 3 / 4 - placeHolders); // if there are placeholders, only get up to the last complete 4 chars l = placeHolders > 0 ? b64.length - 4 : b64.length; for (i = 0, j = 0; i < l; i += 4, j += 3) { tmp = (lookup.indexOf(b64[i]) << 18) | (lookup.indexOf(b64[i + 1]) << 12) | (lookup.indexOf(b64[i + 2]) << 6) | lookup.indexOf(b64[i + 3]); arr.push((tmp & 0xFF0000) >> 16); arr.push((tmp & 0xFF00) >> 8); arr.push(tmp & 0xFF); } if (placeHolders === 2) { tmp = (lookup.indexOf(b64[i]) << 2) | (lookup.indexOf(b64[i + 1]) >> 4); arr.push(tmp & 0xFF); } else if (placeHolders === 1) { tmp = (lookup.indexOf(b64[i]) << 10) | (lookup.indexOf(b64[i + 1]) << 4) | (lookup.indexOf(b64[i + 2]) >> 2); arr.push((tmp >> 8) & 0xFF); arr.push(tmp & 0xFF); } return arr; } function uint8ToBase64(uint8) { var i, extraBytes = uint8.length % 3, // if we have 1 byte left, pad 2 bytes output = "", temp, length; function tripletToBase64 (num) { return lookup[num >> 18 & 0x3F] + lookup[num >> 12 & 0x3F] + lookup[num >> 6 & 0x3F] + lookup[num & 0x3F]; }; // go through the array every three bytes, we'll deal with trailing stuff later for (i = 0, length = uint8.length - extraBytes; i < length; i += 3) { temp = (uint8[i] << 16) + (uint8[i + 1] << 8) + (uint8[i + 2]); output += tripletToBase64(temp); } // pad the end with zeros, but make sure to not forget the extra bytes switch (extraBytes) { case 1: temp = uint8[uint8.length - 1]; output += lookup[temp >> 2]; output += lookup[(temp << 4) & 0x3F]; output += '=='; break; case 2: temp = (uint8[uint8.length - 2] << 8) + (uint8[uint8.length - 1]); output += lookup[temp >> 10]; output += lookup[(temp >> 4) & 0x3F]; output += lookup[(temp << 2) & 0x3F]; output += '='; break; } return output; } module.exports.toByteArray = b64ToByteArray; module.exports.fromByteArray = uint8ToBase64; }()); },{}],5:[function(require,module,exports){ // UTILITY var util = require('util'); var Buffer = require("buffer").Buffer; var pSlice = Array.prototype.slice; function objectKeys(object) { if (Object.keys) return Object.keys(object); var result = []; for (var name in object) { if (Object.prototype.hasOwnProperty.call(object, name)) { result.push(name); } } return result; } // 1. The assert module provides functions that throw // AssertionError's when particular conditions are not met. The // assert module must conform to the following interface. var assert = module.exports = ok; // 2. The AssertionError is defined in assert. // new assert.AssertionError({ message: message, // actual: actual, // expected: expected }) assert.AssertionError = function AssertionError(options) { this.name = 'AssertionError'; this.message = options.message; this.actual = options.actual; this.expected = options.expected; this.operator = options.operator; var stackStartFunction = options.stackStartFunction || fail; if (Error.captureStackTrace) { Error.captureStackTrace(this, stackStartFunction); } }; // assert.AssertionError instanceof Error util.inherits(assert.AssertionError, Error); function replacer(key, value) { if (value === undefined) { return '' + value; } if (typeof value === 'number' && (isNaN(value) || !isFinite(value))) { return value.toString(); } if (typeof value === 'function' || value instanceof RegExp) { return value.toString(); } return value; } function truncate(s, n) { if (typeof s == 'string') { return s.length < n ? s : s.slice(0, n); } else { return s; } } assert.AssertionError.prototype.toString = function() { if (this.message) { return [this.name + ':', this.message].join(' '); } else { return [ this.name + ':', truncate(JSON.stringify(this.actual, replacer), 128), this.operator, truncate(JSON.stringify(this.expected, replacer), 128) ].join(' '); } }; // At present only the three keys mentioned above are used and // understood by the spec. Implementations or sub modules can pass // other keys to the AssertionError's constructor - they will be // ignored. // 3. All of the following functions must throw an AssertionError // when a corresponding condition is not met, with a message that // may be undefined if not provided. All assertion methods provide // both the actual and expected values to the assertion error for // display purposes. function fail(actual, expected, message, operator, stackStartFunction) { throw new assert.AssertionError({ message: message, actual: actual, expected: expected, operator: operator, stackStartFunction: stackStartFunction }); } // EXTENSION! allows for well behaved errors defined elsewhere. assert.fail = fail; // 4. Pure assertion tests whether a value is truthy, as determined // by !!guard. // assert.ok(guard, message_opt); // This statement is equivalent to assert.equal(true, guard, // message_opt);. To test strictly for the value true, use // assert.strictEqual(true, guard, message_opt);. function ok(value, message) { if (!!!value) fail(value, true, message, '==', assert.ok); } assert.ok = ok; // 5. The equality assertion tests shallow, coercive equality with // ==. // assert.equal(actual, expected, message_opt); assert.equal = function equal(actual, expected, message) { if (actual != expected) fail(actual, expected, message, '==', assert.equal); }; // 6. The non-equality assertion tests for whether two objects are not equal // with != assert.notEqual(actual, expected, message_opt); assert.notEqual = function notEqual(actual, expected, message) { if (actual == expected) { fail(actual, expected, message, '!=', assert.notEqual); } }; // 7. The equivalence assertion tests a deep equality relation. // assert.deepEqual(actual, expected, message_opt); assert.deepEqual = function deepEqual(actual, expected, message) { if (!_deepEqual(actual, expected)) { fail(actual, expected, message, 'deepEqual', assert.deepEqual); } }; function _deepEqual(actual, expected) { // 7.1. All identical values are equivalent, as determined by ===. if (actual === expected) { return true; } else if (Buffer.isBuffer(actual) && Buffer.isBuffer(expected)) { if (actual.length != expected.length) return false; for (var i = 0; i < actual.length; i++) { if (actual[i] !== expected[i]) return false; } return true; // 7.2. If the expected value is a Date object, the actual value is // equivalent if it is also a Date object that refers to the same time. } else if (actual instanceof Date && expected instanceof Date) { return actual.getTime() === expected.getTime(); // 7.3. Other pairs that do not both pass typeof value == 'object', // equivalence is determined by ==. } else if (typeof actual != 'object' && typeof expected != 'object') { return actual == expected; // 7.4. For all other Object pairs, including Array objects, equivalence is // determined by having the same number of owned properties (as verified // with Object.prototype.hasOwnProperty.call), the same set of keys // (although not necessarily the same order), equivalent values for every // corresponding key, and an identical 'prototype' property. Note: this // accounts for both named and indexed properties on Arrays. } else { return objEquiv(actual, expected); } } function isUndefinedOrNull(value) { return value === null || value === undefined; } function isArguments(object) { return Object.prototype.toString.call(object) == '[object Arguments]'; } function objEquiv(a, b) { if (isUndefinedOrNull(a) || isUndefinedOrNull(b)) return false; // an identical 'prototype' property. if (a.prototype !== b.prototype) return false; //~~~I've managed to break Object.keys through screwy arguments passing. // Converting to array solves the problem. if (isArguments(a)) { if (!isArguments(b)) { return false; } a = pSlice.call(a); b = pSlice.call(b); return _deepEqual(a, b); } try { var ka = objectKeys(a), kb = objectKeys(b), key, i; } catch (e) {//happens when one is a string literal and the other isn't return false; } // having the same number of owned properties (keys incorporates // hasOwnProperty) if (ka.length != kb.length) return false; //the same set of keys (although not necessarily the same order), ka.sort(); kb.sort(); //~~~cheap key test for (i = ka.length - 1; i >= 0; i--) { if (ka[i] != kb[i]) return false; } //equivalent values for every corresponding key, and //~~~possibly expensive deep test for (i = ka.length - 1; i >= 0; i--) { key = ka[i]; if (!_deepEqual(a[key], b[key])) return false; } return true; } // 8. The non-equivalence assertion tests for any deep inequality. // assert.notDeepEqual(actual, expected, message_opt); assert.notDeepEqual = function notDeepEqual(actual, expected, message) { if (_deepEqual(actual, expected)) { fail(actual, expected, message, 'notDeepEqual', assert.notDeepEqual); } }; // 9. The strict equality assertion tests strict equality, as determined by ===. // assert.strictEqual(actual, expected, message_opt); assert.strictEqual = function strictEqual(actual, expected, message) { if (actual !== expected) { fail(actual, expected, message, '===', assert.strictEqual); } }; // 10. The strict non-equality assertion tests for strict inequality, as // determined by !==. assert.notStrictEqual(actual, expected, message_opt); assert.notStrictEqual = function notStrictEqual(actual, expected, message) { if (actual === expected) { fail(actual, expected, message, '!==', assert.notStrictEqual); } }; function expectedException(actual, expected) { if (!actual || !expected) { return false; } if (expected instanceof RegExp) { return expected.test(actual); } else if (actual instanceof expected) { return true; } else if (expected.call({}, actual) === true) { return true; } return false; } function _throws(shouldThrow, block, expected, message) { var actual; if (typeof expected === 'string') { message = expected; expected = null; } try { block(); } catch (e) { actual = e; } message = (expected && expected.name ? ' (' + expected.name + ').' : '.') + (message ? ' ' + message : '.'); if (shouldThrow && !actual) { fail('Missing expected exception' + message); } if (!shouldThrow && expectedException(actual, expected)) { fail('Got unwanted exception' + message); } if ((shouldThrow && actual && expected && !expectedException(actual, expected)) || (!shouldThrow && actual)) { throw actual; } } // 11. Expected to throw an error: // assert.throws(block, Error_opt, message_opt); assert.throws = function(block, /*optional*/error, /*optional*/message) { _throws.apply(this, [true].concat(pSlice.call(arguments))); }; // EXTENSION! This is annoying to write outside this module. assert.doesNotThrow = function(block, /*optional*/error, /*optional*/message) { _throws.apply(this, [false].concat(pSlice.call(arguments))); }; assert.ifError = function(err) { if (err) {throw err;}}; },{"buffer":9,"util":7}],6:[function(require,module,exports){ var process=require("__browserify_process");if (!process.EventEmitter) process.EventEmitter = function () {}; var EventEmitter = exports.EventEmitter = process.EventEmitter; var isArray = typeof Array.isArray === 'function' ? Array.isArray : function (xs) { return Object.prototype.toString.call(xs) === '[object Array]' } ; function indexOf (xs, x) { if (xs.indexOf) return xs.indexOf(x); for (var i = 0; i < xs.length; i++) { if (x === xs[i]) return i; } return -1; } // By default EventEmitters will print a warning if more than // 10 listeners are added to it. This is a useful default which // helps finding memory leaks. // // Obviously not all Emitters should be limited to 10. This function allows // that to be increased. Set to zero for unlimited. var defaultMaxListeners = 10; EventEmitter.prototype.setMaxListeners = function(n) { if (!this._events) this._events = {}; this._events.maxListeners = n; }; EventEmitter.prototype.emit = function(type) { // If there is no 'error' event listener then throw. if (type === 'error') { if (!this._events || !this._events.error || (isArray(this._events.error) && !this._events.error.length)) { if (arguments[1] instanceof Error) { throw arguments[1]; // Unhandled 'error' event } else { throw new Error("Uncaught, unspecified 'error' event."); } return false; } } if (!this._events) return false; var handler = this._events[type]; if (!handler) return false; if (typeof handler == 'function') { switch (arguments.length) { // fast cases case 1: handler.call(this); break; case 2: handler.call(this, arguments[1]); break; case 3: handler.call(this, arguments[1], arguments[2]); break; // slower default: var args = Array.prototype.slice.call(arguments, 1); handler.apply(this, args); } return true; } else if (isArray(handler)) { var args = Array.prototype.slice.call(arguments, 1); var listeners = handler.slice(); for (var i = 0, l = listeners.length; i < l; i++) { listeners[i].apply(this, args); } return true; } else { return false; } }; // EventEmitter is defined in src/node_events.cc // EventEmitter.prototype.emit() is also defined there. EventEmitter.prototype.addListener = function(type, listener) { if ('function' !== typeof listener) { throw new Error('addListener only takes instances of Function'); } if (!this._events) this._events = {}; // To avoid recursion in the case that type == "newListeners"! Before // adding it to the listeners, first emit "newListeners". this.emit('newListener', type, listener); if (!this._events[type]) { // Optimize the case of one listener. Don't need the extra array object. this._events[type] = listener; } else if (isArray(this._events[type])) { // Check for listener leak if (!this._events[type].warned) { var m; if (this._events.maxListeners !== undefined) { m = this._events.maxListeners; } else { m = defaultMaxListeners; } if (m && m > 0 && this._events[type].length > m) { this._events[type].warned = true; console.error('(node) warning: possible EventEmitter memory ' + 'leak detected. %d listeners added. ' + 'Use emitter.setMaxListeners() to increase limit.', this._events[type].length); console.trace(); } } // If we've already got an array, just append. this._events[type].push(listener); } else { // Adding the second element, need to change to array. this._events[type] = [this._events[type], listener]; } return this; }; EventEmitter.prototype.on = EventEmitter.prototype.addListener; EventEmitter.prototype.once = function(type, listener) { var self = this; self.on(type, function g() { self.removeListener(type, g); listener.apply(this, arguments); }); return this; }; EventEmitter.prototype.removeListener = function(type, listener) { if ('function' !== typeof listener) { throw new Error('removeListener only takes instances of Function'); } // does not use listeners(), so no side effect of creating _events[type] if (!this._events || !this._events[type]) return this; var list = this._events[type]; if (isArray(list)) { var i = indexOf(list, listener); if (i < 0) return this; list.splice(i, 1); if (list.length == 0) delete this._events[type]; } else if (this._events[type] === listener) { delete this._events[type]; } return this; }; EventEmitter.prototype.removeAllListeners = function(type) { if (arguments.length === 0) { this._events = {}; return this; } // does not use listeners(), so no side effect of creating _events[type] if (type && this._events && this._events[type]) this._events[type] = null; return this; }; EventEmitter.prototype.listeners = function(type) { if (!this._events) this._events = {}; if (!this._events[type]) this._events[type] = []; if (!isArray(this._events[type])) { this._events[type] = [this._events[type]]; } return this._events[type]; }; EventEmitter.listenerCount = function(emitter, type) { var ret; if (!emitter._events || !emitter._events[type]) ret = 0; else if (typeof emitter._events[type] === 'function') ret = 1; else ret = emitter._events[type].length; return ret; }; },{"__browserify_process":30}],7:[function(require,module,exports){ var events = require('events'); exports.isArray = isArray; exports.isDate = function(obj){return Object.prototype.toString.call(obj) === '[object Date]'}; exports.isRegExp = function(obj){return Object.prototype.toString.call(obj) === '[object RegExp]'}; exports.print = function () {}; exports.puts = function () {}; exports.debug = function() {}; exports.inspect = function(obj, showHidden, depth, colors) { var seen = []; var stylize = function(str, styleType) { // http://en.wikipedia.org/wiki/ANSI_escape_code#graphics var styles = { 'bold' : [1, 22], 'italic' : [3, 23], 'underline' : [4, 24], 'inverse' : [7, 27], 'white' : [37, 39], 'grey' : [90, 39], 'black' : [30, 39], 'blue' : [34, 39], 'cyan' : [36, 39], 'green' : [32, 39], 'magenta' : [35, 39], 'red' : [31, 39], 'yellow' : [33, 39] }; var style = { 'special': 'cyan', 'number': 'blue', 'boolean': 'yellow', 'undefined': 'grey', 'null': 'bold', 'string': 'green', 'date': 'magenta', // "name": intentionally not styling 'regexp': 'red' }[styleType]; if (style) { return '\u001b[' + styles[style][0] + 'm' + str + '\u001b[' + styles[style][1] + 'm'; } else { return str; } }; if (! colors) { stylize = function(str, styleType) { return str; }; } function format(value, recurseTimes) { // Provide a hook for user-specified inspect functions. // Check that value is an object with an inspect function on it if (value && typeof value.inspect === 'function' && // Filter out the util module, it's inspect function is special value !== exports && // Also filter out any prototype objects using the circular check. !(value.constructor && value.constructor.prototype === value)) { return value.inspect(recurseTimes); } // Primitive types cannot have properties switch (typeof value) { case 'undefined': return stylize('undefined', 'undefined'); case 'string': var simple = '\'' + JSON.stringify(value).replace(/^"|"$/g, '') .replace(/'/g, "\\'") .replace(/\\"/g, '"') + '\''; return stylize(simple, 'string'); case 'number': return stylize('' + value, 'number'); case 'boolean': return stylize('' + value, 'boolean'); } // For some reason typeof null is "object", so special case here. if (value === null) { return stylize('null', 'null'); } // Look up the keys of the object. var visible_keys = Object_keys(value); var keys = showHidden ? Object_getOwnPropertyNames(value) : visible_keys; // Functions without properties can be shortcutted. if (typeof value === 'function' && keys.length === 0) { if (isRegExp(value)) { return stylize('' + value, 'regexp'); } else { var name = value.name ? ': ' + value.name : ''; return stylize('[Function' + name + ']', 'special'); } } // Dates without properties can be shortcutted if (isDate(value) && keys.length === 0) { return stylize(value.toUTCString(), 'date'); } var base, type, braces; // Determine the object type if (isArray(value)) { type = 'Array'; braces = ['[', ']']; } else { type = 'Object'; braces = ['{', '}']; } // Make functions say that they are functions if (typeof value === 'function') { var n = value.name ? ': ' + value.name : ''; base = (isRegExp(value)) ? ' ' + value : ' [Function' + n + ']'; } else { base = ''; } // Make dates with properties first say the date if (isDate(value)) { base = ' ' + value.toUTCString(); } if (keys.length === 0) { return braces[0] + base + braces[1]; } if (recurseTimes < 0) { if (isRegExp(value)) { return stylize('' + value, 'regexp'); } else { return stylize('[Object]', 'special'); } } seen.push(value); var output = keys.map(function(key) { var name, str; if (value.__lookupGetter__) { if (value.__lookupGetter__(key)) { if (value.__lookupSetter__(key)) { str = stylize('[Getter/Setter]', 'special'); } else { str = stylize('[Getter]', 'special'); } } else { if (value.__lookupSetter__(key)) { str = stylize('[Setter]', 'special'); } } } if (visible_keys.indexOf(key) < 0) { name = '[' + key + ']'; } if (!str) { if (seen.indexOf(value[key]) < 0) { if (recurseTimes === null) { str = format(value[key]); } else { str = format(value[key], recurseTimes - 1); } if (str.indexOf('\n') > -1) { if (isArray(value)) { str = str.split('\n').map(function(line) { return ' ' + line; }).join('\n').substr(2); } else { str = '\n' + str.split('\n').map(function(line) { return ' ' + line; }).join('\n'); } } } else { str = stylize('[Circular]', 'special'); } } if (typeof name === 'undefined') { if (type === 'Array' && key.match(/^\d+$/)) { return str; } name = JSON.stringify('' + key); if (name.match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)) { name = name.substr(1, name.length - 2); name = stylize(name, 'name'); } else { name = name.replace(/'/g, "\\'") .replace(/\\"/g, '"') .replace(/(^"|"$)/g, "'"); name = stylize(name, 'string'); } } return name + ': ' + str; }); seen.pop(); var numLinesEst = 0; var length = output.reduce(function(prev, cur) { numLinesEst++; if (cur.indexOf('\n') >= 0) numLinesEst++; return prev + cur.length + 1; }, 0); if (length > 50) { output = braces[0] + (base === '' ? '' : base + '\n ') + ' ' + output.join(',\n ') + ' ' + braces[1]; } else { output = braces[0] + base + ' ' + output.join(', ') + ' ' + braces[1]; } return output; } return format(obj, (typeof depth === 'undefined' ? 2 : depth)); }; function isArray(ar) { return Array.isArray(ar) || (typeof ar === 'object' && Object.prototype.toString.call(ar) === '[object Array]'); } function isRegExp(re) { typeof re === 'object' && Object.prototype.toString.call(re) === '[object RegExp]'; } function isDate(d) { return typeof d === 'object' && Object.prototype.toString.call(d) === '[object Date]'; } function pad(n) { return n < 10 ? '0' + n.toString(10) : n.toString(10); } var months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']; // 26 Feb 16:19:34 function timestamp() { var d = new Date(); var time = [pad(d.getHours()), pad(d.getMinutes()), pad(d.getSeconds())].join(':'); return [d.getDate(), months[d.getMonth()], time].join(' '); } exports.log = function (msg) {}; exports.pump = null; var Object_keys = Object.keys || function (obj) { var res = []; for (var key in obj) res.push(key); return res; }; var Object_getOwnPropertyNames = Object.getOwnPropertyNames || function (obj) { var res = []; for (var key in obj) { if (Object.hasOwnProperty.call(obj, key)) res.push(key); } return res; }; var Object_create = Object.create || function (prototype, properties) { // from es5-shim var object; if (prototype === null) { object = { '__proto__' : null }; } else { if (typeof prototype !== 'object') { throw new TypeError( 'typeof prototype[' + (typeof prototype) + '] != \'object\'' ); } var Type = function () {}; Type.prototype = prototype; object = new Type(); object.__proto__ = prototype; } if (typeof properties !== 'undefined' && Object.defineProperties) { Object.defineProperties(object, properties); } return object; }; exports.inherits = function(ctor, superCtor) { ctor.super_ = superCtor; ctor.prototype = Object_create(superCtor.prototype, { constructor: { value: ctor, enumerable: false, writable: true, configurable: true } }); }; var formatRegExp = /%[sdj%]/g; exports.format = function(f) { if (typeof f !== 'string') { var objects = []; for (var i = 0; i < arguments.length; i++) { objects.push(exports.inspect(arguments[i])); } return objects.join(' '); } var i = 1; var args = arguments; var len = args.length; var str = String(f).replace(formatRegExp, function(x) { if (x === '%%') return '%'; if (i >= len) return x; switch (x) { case '%s': return String(args[i++]); case '%d': return Number(args[i++]); case '%j': return JSON.stringify(args[i++]); default: return x; } }); for(var x = args[i]; i < len; x = args[++i]){ if (x === null || typeof x !== 'object') { str += ' ' + x; } else { str += ' ' + exports.inspect(x); } } return str; }; },{"events":6}],8:[function(require,module,exports){ exports.readIEEE754 = function(buffer, offset, isBE, mLen, nBytes) { var e, m, eLen = nBytes * 8 - mLen - 1, eMax = (1 << eLen) - 1, eBias = eMax >> 1, nBits = -7, i = isBE ? 0 : (nBytes - 1), d = isBE ? 1 : -1, s = buffer[offset + i]; i += d; e = s & ((1 << (-nBits)) - 1); s >>= (-nBits); nBits += eLen; for (; nBits > 0; e = e * 256 + buffer[offset + i], i += d, nBits -= 8); m = e & ((1 << (-nBits)) - 1); e >>= (-nBits); nBits += mLen; for (; nBits > 0; m = m * 256 + buffer[offset + i], i += d, nBits -= 8); if (e === 0) { e = 1 - eBias; } else if (e === eMax) { return m ? NaN : ((s ? -1 : 1) * Infinity); } else { m = m + Math.pow(2, mLen); e = e - eBias; } return (s ? -1 : 1) * m * Math.pow(2, e - mLen); }; exports.writeIEEE754 = function(buffer, value, offset, isBE, mLen, nBytes) { var e, m, c, eLen = nBytes * 8 - mLen - 1, eMax = (1 << eLen) - 1, eBias = eMax >> 1, rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0), i = isBE ? (nBytes - 1) : 0, d = isBE ? -1 : 1, s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0; value = Math.abs(value); if (isNaN(value) || value === Infinity) { m = isNaN(value) ? 1 : 0; e = eMax; } else { e = Math.floor(Math.log(value) / Math.LN2); if (value * (c = Math.pow(2, -e)) < 1) { e--; c *= 2; } if (e + eBias >= 1) { value += rt / c; } else { value += rt * Math.pow(2, 1 - eBias); } if (value * c >= 2) { e++; c /= 2; } if (e + eBias >= eMax) { m = 0; e = eMax; } else if (e + eBias >= 1) { m = (value * c - 1) * Math.pow(2, mLen); e = e + eBias; } else { m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen); e = 0; } } for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8); e = (e << mLen) | m; eLen += mLen; for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8); buffer[offset + i - d] |= s * 128; }; },{}],9:[function(require,module,exports){ var assert = require('assert'); exports.Buffer = Buffer; exports.SlowBuffer = Buffer; Buffer.poolSize = 8192; exports.INSPECT_MAX_BYTES = 50; function Buffer(subject, encoding, offset) { if (!(this instanceof Buffer)) { return new Buffer(subject, encoding, offset); } this.parent = this; this.offset = 0; var type; // Are we slicing? if (typeof offset === 'number') { this.length = coerce(encoding); this.offset = offset; } else { // Find the length switch (type = typeof subject) { case 'number': this.length = coerce(subject); break; case 'string': this.length = Buffer.byteLength(subject, encoding); break; case 'object': // Assume object is an array this.length = coerce(subject.length); break; default: throw new Error('First argument needs to be a number, ' + 'array or string.'); } // Treat array-ish objects as a byte array. if (isArrayIsh(subject)) { for (var i = 0; i < this.length; i++) { if (subject instanceof Buffer) { this[i] = subject.readUInt8(i); } else { this[i] = subject[i]; } } } else if (type == 'string') { // We are a string this.length = this.write(subject, 0, encoding); } else if (type === 'number') { for (var i = 0; i < this.length; i++) { this[i] = 0; } } } } Buffer.prototype.get = function get(i) { if (i < 0 || i >= this.length) throw new Error('oob'); return this[i]; }; Buffer.prototype.set = function set(i, v) { if (i < 0 || i >= this.length) throw new Error('oob'); return this[i] = v; }; Buffer.byteLength = function (str, encoding) { switch (encoding || "utf8") { case 'hex': return str.length / 2; case 'utf8': case 'utf-8': return utf8ToBytes(str).length; case 'ascii': case 'binary': return str.length; case 'base64': return base64ToBytes(str).length; default: throw new Error('Unknown encoding'); } }; Buffer.prototype.utf8Write = function (string, offset, length) { var bytes, pos; return Buffer._charsWritten = blitBuffer(utf8ToBytes(string), this, offset, length); }; Buffer.prototype.asciiWrite = function (string, offset, length) { var bytes, pos; return Buffer._charsWritten = blitBuffer(asciiToBytes(string), this, offset, length); }; Buffer.prototype.binaryWrite = Buffer.prototype.asciiWrite; Buffer.prototype.base64Write = function (string, offset, length) { var bytes, pos; return Buffer._charsWritten = blitBuffer(base64ToBytes(string), this, offset, length); }; Buffer.prototype.base64Slice = function (start, end) { var bytes = Array.prototype.slice.apply(this, arguments) return require("base64-js").fromByteArray(bytes); }; Buffer.prototype.utf8Slice = function () { var bytes = Array.prototype.slice.apply(this, arguments); var res = ""; var tmp = ""; var i = 0; while (i < bytes.length) { if (bytes[i] <= 0x7F) { res += decodeUtf8Char(tmp) + String.fromCharCode(bytes[i]); tmp = ""; } else tmp += "%" + bytes[i].toString(16); i++; } return res + decodeUtf8Char(tmp); } Buffer.prototype.asciiSlice = function () { var bytes = Array.prototype.slice.apply(this, arguments); var ret = ""; for (var i = 0; i < bytes.length; i++) ret += String.fromCharCode(bytes[i]); return ret; } Buffer.prototype.binarySlice = Buffer.prototype.asciiSlice; Buffer.prototype.inspect = function() { var out = [], len = this.length; for (var i = 0; i < len; i++) { out[i] = toHex(this[i]); if (i == exports.INSPECT_MAX_BYTES) { out[i + 1] = '...'; break; } } return ''; }; Buffer.prototype.hexSlice = function(start, end) { var len = this.length; if (!start || start < 0) start = 0; if (!end || end < 0 || end > len) end = len; var out = ''; for (var i = start; i < end; i++) { out += toHex(this[i]); } return out; }; Buffer.prototype.toString = function(encoding, start, end) { encoding = String(encoding || 'utf8').toLowerCase(); start = +start || 0; if (typeof end == 'undefined') end = this.length; // Fastpath empty strings if (+end == start) { return ''; } switch (encoding) { case 'hex': return this.hexSlice(start, end); case 'utf8': case 'utf-8': return this.utf8Slice(start, end); case 'ascii': return this.asciiSlice(start, end); case 'binary': return this.binarySlice(start, end); case 'base64': return this.base64Slice(start, end); case 'ucs2': case 'ucs-2': return this.ucs2Slice(start, end); default: throw new Error('Unknown encoding'); } }; Buffer.prototype.hexWrite = function(string, offset, length) { offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } // must be an even number of digits var strLen = string.length; if (strLen % 2) { throw new Error('Invalid hex string'); } if (length > strLen / 2) { length = strLen / 2; } for (var i = 0; i < length; i++) { var byte = parseInt(string.substr(i * 2, 2), 16); if (isNaN(byte)) throw new Error('Invalid hex string'); this[offset + i] = byte; } Buffer._charsWritten = i * 2; return i; }; Buffer.prototype.write = function(string, offset, length, encoding) { // Support both (string, offset, length, encoding) // and the legacy (string, encoding, offset, length) if (isFinite(offset)) { if (!isFinite(length)) { encoding = length; length = undefined; } } else { // legacy var swap = encoding; encoding = offset; offset = length; length = swap; } offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } encoding = String(encoding || 'utf8').toLowerCase(); switch (encoding) { case 'hex': return this.hexWrite(string, offset, length); case 'utf8': case 'utf-8': return this.utf8Write(string, offset, length); case 'ascii': return this.asciiWrite(string, offset, length); case 'binary': return this.binaryWrite(string, offset, length); case 'base64': return this.base64Write(string, offset, length); case 'ucs2': case 'ucs-2': return this.ucs2Write(string, offset, length); default: throw new Error('Unknown encoding'); } }; // slice(start, end) Buffer.prototype.slice = function(start, end) { if (end === undefined) end = this.length; if (end > this.length) { throw new Error('oob'); } if (start > end) { throw new Error('oob'); } return new Buffer(this, end - start, +start); }; // copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length) Buffer.prototype.copy = function(target, target_start, start, end) { var source = this; start || (start = 0); if (end === undefined || isNaN(end)) { end = this.length; } target_start || (target_start = 0); if (end < start) throw new Error('sourceEnd < sourceStart'); // Copy 0 bytes; we're done if (end === start) return 0; if (target.length == 0 || source.length == 0) return 0; if (target_start < 0 || target_start >= target.length) { throw new Error('targetStart out of bounds'); } if (start < 0 || start >= source.length) { throw new Error('sourceStart out of bounds'); } if (end < 0 || end > source.length) { throw new Error('sourceEnd out of bounds'); } // Are we oob? if (end > this.length) { end = this.length; } if (target.length - target_start < end - start) { end = target.length - target_start + start; } var temp = []; for (var i=start; i= this.length) { throw new Error('start out of bounds'); } if (end < 0 || end > this.length) { throw new Error('end out of bounds'); } for (var i = start; i < end; i++) { this[i] = value; } } // Static methods Buffer.isBuffer = function isBuffer(b) { return b instanceof Buffer || b instanceof Buffer; }; Buffer.concat = function (list, totalLength) { if (!isArray(list)) { throw new Error("Usage: Buffer.concat(list, [totalLength])\n \ list should be an Array."); } if (list.length === 0) { return new Buffer(0); } else if (list.length === 1) { return list[0]; } if (typeof totalLength !== 'number') { totalLength = 0; for (var i = 0; i < list.length; i++) { var buf = list[i]; totalLength += buf.length; } } var buffer = new Buffer(totalLength); var pos = 0; for (var i = 0; i < list.length; i++) { var buf = list[i]; buf.copy(buffer, pos); pos += buf.length; } return buffer; }; // helpers function coerce(length) { // Coerce length to a number (possibly NaN), round up // in case it's fractional (e.g. 123.456) then do a // double negate to coerce a NaN to 0. Easy, right? length = ~~Math.ceil(+length); return length < 0 ? 0 : length; } function isArray(subject) { return (Array.isArray || function(subject){ return {}.toString.apply(subject) == '[object Array]' }) (subject) } function isArrayIsh(subject) { return isArray(subject) || Buffer.isBuffer(subject) || subject && typeof subject === 'object' && typeof subject.length === 'number'; } function toHex(n) { if (n < 16) return '0' + n.toString(16); return n.toString(16); } function utf8ToBytes(str) { var byteArray = []; for (var i = 0; i < str.length; i++) if (str.charCodeAt(i) <= 0x7F) byteArray.push(str.charCodeAt(i)); else { var h = encodeURIComponent(str.charAt(i)).substr(1).split('%'); for (var j = 0; j < h.length; j++) byteArray.push(parseInt(h[j], 16)); } return byteArray; } function asciiToBytes(str) { var byteArray = [] for (var i = 0; i < str.length; i++ ) // Node's code seems to be doing this and not & 0x7F.. byteArray.push( str.charCodeAt(i) & 0xFF ); return byteArray; } function base64ToBytes(str) { return require("base64-js").toByteArray(str); } function blitBuffer(src, dst, offset, length) { var pos, i = 0; while (i < length) { if ((i+offset >= dst.length) || (i >= src.length)) break; dst[i + offset] = src[i]; i++; } return i; } function decodeUtf8Char(str) { try { return decodeURIComponent(str); } catch (err) { return String.fromCharCode(0xFFFD); // UTF 8 invalid char } } // read/write bit-twiddling Buffer.prototype.readUInt8 = function(offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return; return buffer[offset]; }; function readUInt16(buffer, offset, isBigEndian, noAssert) { var val = 0; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return 0; if (isBigEndian) { val = buffer[offset] << 8; if (offset + 1 < buffer.length) { val |= buffer[offset + 1]; } } else { val = buffer[offset]; if (offset + 1 < buffer.length) { val |= buffer[offset + 1] << 8; } } return val; } Buffer.prototype.readUInt16LE = function(offset, noAssert) { return readUInt16(this, offset, false, noAssert); }; Buffer.prototype.readUInt16BE = function(offset, noAssert) { return readUInt16(this, offset, true, noAssert); }; function readUInt32(buffer, offset, isBigEndian, noAssert) { var val = 0; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return 0; if (isBigEndian) { if (offset + 1 < buffer.length) val = buffer[offset + 1] << 16; if (offset + 2 < buffer.length) val |= buffer[offset + 2] << 8; if (offset + 3 < buffer.length) val |= buffer[offset + 3]; val = val + (buffer[offset] << 24 >>> 0); } else { if (offset + 2 < buffer.length) val = buffer[offset + 2] << 16; if (offset + 1 < buffer.length) val |= buffer[offset + 1] << 8; val |= buffer[offset]; if (offset + 3 < buffer.length) val = val + (buffer[offset + 3] << 24 >>> 0); } return val; } Buffer.prototype.readUInt32LE = function(offset, noAssert) { return readUInt32(this, offset, false, noAssert); }; Buffer.prototype.readUInt32BE = function(offset, noAssert) { return readUInt32(this, offset, true, noAssert); }; /* * Signed integer types, yay team! A reminder on how two's complement actually * works. The first bit is the signed bit, i.e. tells us whether or not the * number should be positive or negative. If the two's complement value is * positive, then we're done, as it's equivalent to the unsigned representation. * * Now if the number is positive, you're pretty much done, you can just leverage * the unsigned translations and return those. Unfortunately, negative numbers * aren't quite that straightforward. * * At first glance, one might be inclined to use the traditional formula to * translate binary numbers between the positive and negative values in two's * complement. (Though it doesn't quite work for the most negative value) * Mainly: * - invert all the bits * - add one to the result * * Of course, this doesn't quite work in Javascript. Take for example the value * of -128. This could be represented in 16 bits (big-endian) as 0xff80. But of * course, Javascript will do the following: * * > ~0xff80 * -65409 * * Whoh there, Javascript, that's not quite right. But wait, according to * Javascript that's perfectly correct. When Javascript ends up seeing the * constant 0xff80, it has no notion that it is actually a signed number. It * assumes that we've input the unsigned value 0xff80. Thus, when it does the * binary negation, it casts it into a signed value, (positive 0xff80). Then * when you perform binary negation on that, it turns it into a negative number. * * Instead, we're going to have to use the following general formula, that works * in a rather Javascript friendly way. I'm glad we don't support this kind of * weird numbering scheme in the kernel. * * (BIT-MAX - (unsigned)val + 1) * -1 * * The astute observer, may think that this doesn't make sense for 8-bit numbers * (really it isn't necessary for them). However, when you get 16-bit numbers, * you do. Let's go back to our prior example and see how this will look: * * (0xffff - 0xff80 + 1) * -1 * (0x007f + 1) * -1 * (0x0080) * -1 */ Buffer.prototype.readInt8 = function(offset, noAssert) { var buffer = this; var neg; if (!noAssert) { assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return; neg = buffer[offset] & 0x80; if (!neg) { return (buffer[offset]); } return ((0xff - buffer[offset] + 1) * -1); }; function readInt16(buffer, offset, isBigEndian, noAssert) { var neg, val; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to read beyond buffer length'); } val = readUInt16(buffer, offset, isBigEndian, noAssert); neg = val & 0x8000; if (!neg) { return val; } return (0xffff - val + 1) * -1; } Buffer.prototype.readInt16LE = function(offset, noAssert) { return readInt16(this, offset, false, noAssert); }; Buffer.prototype.readInt16BE = function(offset, noAssert) { return readInt16(this, offset, true, noAssert); }; function readInt32(buffer, offset, isBigEndian, noAssert) { var neg, val; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } val = readUInt32(buffer, offset, isBigEndian, noAssert); neg = val & 0x80000000; if (!neg) { return (val); } return (0xffffffff - val + 1) * -1; } Buffer.prototype.readInt32LE = function(offset, noAssert) { return readInt32(this, offset, false, noAssert); }; Buffer.prototype.readInt32BE = function(offset, noAssert) { return readInt32(this, offset, true, noAssert); }; function readFloat(buffer, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } return require('./buffer_ieee754').readIEEE754(buffer, offset, isBigEndian, 23, 4); } Buffer.prototype.readFloatLE = function(offset, noAssert) { return readFloat(this, offset, false, noAssert); }; Buffer.prototype.readFloatBE = function(offset, noAssert) { return readFloat(this, offset, true, noAssert); }; function readDouble(buffer, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset + 7 < buffer.length, 'Trying to read beyond buffer length'); } return require('./buffer_ieee754').readIEEE754(buffer, offset, isBigEndian, 52, 8); } Buffer.prototype.readDoubleLE = function(offset, noAssert) { return readDouble(this, offset, false, noAssert); }; Buffer.prototype.readDoubleBE = function(offset, noAssert) { return readDouble(this, offset, true, noAssert); }; /* * We have to make sure that the value is a valid integer. This means that it is * non-negative. It has no fractional component and that it does not exceed the * maximum allowed value. * * value The number to check for validity * * max The maximum value */ function verifuint(value, max) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value >= 0, 'specified a negative value for writing an unsigned value'); assert.ok(value <= max, 'value is larger than maximum value for type'); assert.ok(Math.floor(value) === value, 'value has a fractional component'); } Buffer.prototype.writeUInt8 = function(value, offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xff); } if (offset < buffer.length) { buffer[offset] = value; } }; function writeUInt16(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xffff); } for (var i = 0; i < Math.min(buffer.length - offset, 2); i++) { buffer[offset + i] = (value & (0xff << (8 * (isBigEndian ? 1 - i : i)))) >>> (isBigEndian ? 1 - i : i) * 8; } } Buffer.prototype.writeUInt16LE = function(value, offset, noAssert) { writeUInt16(this, value, offset, false, noAssert); }; Buffer.prototype.writeUInt16BE = function(value, offset, noAssert) { writeUInt16(this, value, offset, true, noAssert); }; function writeUInt32(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xffffffff); } for (var i = 0; i < Math.min(buffer.length - offset, 4); i++) { buffer[offset + i] = (value >>> (isBigEndian ? 3 - i : i) * 8) & 0xff; } } Buffer.prototype.writeUInt32LE = function(value, offset, noAssert) { writeUInt32(this, value, offset, false, noAssert); }; Buffer.prototype.writeUInt32BE = function(value, offset, noAssert) { writeUInt32(this, value, offset, true, noAssert); }; /* * We now move onto our friends in the signed number category. Unlike unsigned * numbers, we're going to have to worry a bit more about how we put values into * arrays. Since we are only worrying about signed 32-bit values, we're in * slightly better shape. Unfortunately, we really can't do our favorite binary * & in this system. It really seems to do the wrong thing. For example: * * > -32 & 0xff * 224 * * What's happening above is really: 0xe0 & 0xff = 0xe0. However, the results of * this aren't treated as a signed number. Ultimately a bad thing. * * What we're going to want to do is basically create the unsigned equivalent of * our representation and pass that off to the wuint* functions. To do that * we're going to do the following: * * - if the value is positive * we can pass it directly off to the equivalent wuint * - if the value is negative * we do the following computation: * mb + val + 1, where * mb is the maximum unsigned value in that byte size * val is the Javascript negative integer * * * As a concrete value, take -128. In signed 16 bits this would be 0xff80. If * you do out the computations: * * 0xffff - 128 + 1 * 0xffff - 127 * 0xff80 * * You can then encode this value as the signed version. This is really rather * hacky, but it should work and get the job done which is our goal here. */ /* * A series of checks to make sure we actually have a signed 32-bit number */ function verifsint(value, max, min) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value <= max, 'value larger than maximum allowed value'); assert.ok(value >= min, 'value smaller than minimum allowed value'); assert.ok(Math.floor(value) === value, 'value has a fractional component'); } function verifIEEE754(value, max, min) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value <= max, 'value larger than maximum allowed value'); assert.ok(value >= min, 'value smaller than minimum allowed value'); } Buffer.prototype.writeInt8 = function(value, offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7f, -0x80); } if (value >= 0) { buffer.writeUInt8(value, offset, noAssert); } else { buffer.writeUInt8(0xff + value + 1, offset, noAssert); } }; function writeInt16(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7fff, -0x8000); } if (value >= 0) { writeUInt16(buffer, value, offset, isBigEndian, noAssert); } else { writeUInt16(buffer, 0xffff + value + 1, offset, isBigEndian, noAssert); } } Buffer.prototype.writeInt16LE = function(value, offset, noAssert) { writeInt16(this, value, offset, false, noAssert); }; Buffer.prototype.writeInt16BE = function(value, offset, noAssert) { writeInt16(this, value, offset, true, noAssert); }; function writeInt32(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7fffffff, -0x80000000); } if (value >= 0) { writeUInt32(buffer, value, offset, isBigEndian, noAssert); } else { writeUInt32(buffer, 0xffffffff + value + 1, offset, isBigEndian, noAssert); } } Buffer.prototype.writeInt32LE = function(value, offset, noAssert) { writeInt32(this, value, offset, false, noAssert); }; Buffer.prototype.writeInt32BE = function(value, offset, noAssert) { writeInt32(this, value, offset, true, noAssert); }; function writeFloat(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to write beyond buffer length'); verifIEEE754(value, 3.4028234663852886e+38, -3.4028234663852886e+38); } require('./buffer_ieee754').writeIEEE754(buffer, value, offset, isBigEndian, 23, 4); } Buffer.prototype.writeFloatLE = function(value, offset, noAssert) { writeFloat(this, value, offset, false, noAssert); }; Buffer.prototype.writeFloatBE = function(value, offset, noAssert) { writeFloat(this, value, offset, true, noAssert); }; function writeDouble(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 7 < buffer.length, 'Trying to write beyond buffer length'); verifIEEE754(value, 1.7976931348623157E+308, -1.7976931348623157E+308); } require('./buffer_ieee754').writeIEEE754(buffer, value, offset, isBigEndian, 52, 8); } Buffer.prototype.writeDoubleLE = function(value, offset, noAssert) { writeDouble(this, value, offset, false, noAssert); }; Buffer.prototype.writeDoubleBE = function(value, offset, noAssert) { writeDouble(this, value, offset, true, noAssert); }; },{"./buffer_ieee754":8,"assert":5,"base64-js":4}],10:[function(require,module,exports){ var Buffer = require('buffer').Buffer; var intSize = 4; var zeroBuffer = new Buffer(intSize); zeroBuffer.fill(0); var chrsz = 8; function toArray(buf, bigEndian) { if ((buf.length % intSize) !== 0) { var len = buf.length + (intSize - (buf.length % intSize)); buf = Buffer.concat([buf, zeroBuffer], len); } var arr = []; var fn = bigEndian ? buf.readInt32BE : buf.readInt32LE; for (var i = 0; i < buf.length; i += intSize) { arr.push(fn.call(buf, i)); } return arr; } function toBuffer(arr, size, bigEndian) { var buf = new Buffer(size); var fn = bigEndian ? buf.writeInt32BE : buf.writeInt32LE; for (var i = 0; i < arr.length; i++) { fn.call(buf, arr[i], i * 4, true); } return buf; } function hash(buf, fn, hashSize, bigEndian) { if (!Buffer.isBuffer(buf)) buf = new Buffer(buf); var arr = fn(toArray(buf, bigEndian), buf.length * chrsz); return toBuffer(arr, hashSize, bigEndian); } module.exports = { hash: hash }; },{"buffer":9}],11:[function(require,module,exports){ var Buffer = require('buffer').Buffer var sha = require('./sha') var sha256 = require('./sha256') var rng = require('./rng') var md5 = require('./md5') var algorithms = { sha1: sha, sha256: sha256, md5: md5 } var blocksize = 64 var zeroBuffer = new Buffer(blocksize); zeroBuffer.fill(0) function hmac(fn, key, data) { if(!Buffer.isBuffer(key)) key = new Buffer(key) if(!Buffer.isBuffer(data)) data = new Buffer(data) if(key.length > blocksize) { key = fn(key) } else if(key.length < blocksize) { key = Buffer.concat([key, zeroBuffer], blocksize) } var ipad = new Buffer(blocksize), opad = new Buffer(blocksize) for(var i = 0; i < blocksize; i++) { ipad[i] = key[i] ^ 0x36 opad[i] = key[i] ^ 0x5C } var hash = fn(Buffer.concat([ipad, data])) return fn(Buffer.concat([opad, hash])) } function hash(alg, key) { alg = alg || 'sha1' var fn = algorithms[alg] var bufs = [] var length = 0 if(!fn) error('algorithm:', alg, 'is not yet supported') return { update: function (data) { if(!Buffer.isBuffer(data)) data = new Buffer(data) bufs.push(data) length += data.length return this }, digest: function (enc) { var buf = Buffer.concat(bufs) var r = key ? hmac(fn, key, buf) : fn(buf) bufs = null return enc ? r.toString(enc) : r } } } function error () { var m = [].slice.call(arguments).join(' ') throw new Error([ m, 'we accept pull requests', 'http://github.com/dominictarr/crypto-browserify' ].join('\n')) } exports.createHash = function (alg) { return hash(alg) } exports.createHmac = function (alg, key) { return hash(alg, key) } exports.randomBytes = function(size, callback) { if (callback && callback.call) { try { callback.call(this, undefined, new Buffer(rng(size))) } catch (err) { callback(err) } } else { return new Buffer(rng(size)) } } function each(a, f) { for(var i in a) f(a[i], i) } // the least I can do is make error messages for the rest of the node.js/crypto api. each(['createCredentials' , 'createCipher' , 'createCipheriv' , 'createDecipher' , 'createDecipheriv' , 'createSign' , 'createVerify' , 'createDiffieHellman' , 'pbkdf2'], function (name) { exports[name] = function () { error('sorry,', name, 'is not implemented yet') } }) },{"./md5":12,"./rng":13,"./sha":14,"./sha256":15,"buffer":9}],12:[function(require,module,exports){ /* * A JavaScript implementation of the RSA Data Security, Inc. MD5 Message * Digest Algorithm, as defined in RFC 1321. * Version 2.1 Copyright (C) Paul Johnston 1999 - 2002. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See http://pajhome.org.uk/crypt/md5 for more info. */ var helpers = require('./helpers'); /* * Perform a simple self-test to see if the VM is working */ function md5_vm_test() { return hex_md5("abc") == "900150983cd24fb0d6963f7d28e17f72"; } /* * Calculate the MD5 of an array of little-endian words, and a bit length */ function core_md5(x, len) { /* append padding */ x[len >> 5] |= 0x80 << ((len) % 32); x[(((len + 64) >>> 9) << 4) + 14] = len; var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; a = md5_ff(a, b, c, d, x[i+ 0], 7 , -680876936); d = md5_ff(d, a, b, c, x[i+ 1], 12, -389564586); c = md5_ff(c, d, a, b, x[i+ 2], 17, 606105819); b = md5_ff(b, c, d, a, x[i+ 3], 22, -1044525330); a = md5_ff(a, b, c, d, x[i+ 4], 7 , -176418897); d = md5_ff(d, a, b, c, x[i+ 5], 12, 1200080426); c = md5_ff(c, d, a, b, x[i+ 6], 17, -1473231341); b = md5_ff(b, c, d, a, x[i+ 7], 22, -45705983); a = md5_ff(a, b, c, d, x[i+ 8], 7 , 1770035416); d = md5_ff(d, a, b, c, x[i+ 9], 12, -1958414417); c = md5_ff(c, d, a, b, x[i+10], 17, -42063); b = md5_ff(b, c, d, a, x[i+11], 22, -1990404162); a = md5_ff(a, b, c, d, x[i+12], 7 , 1804603682); d = md5_ff(d, a, b, c, x[i+13], 12, -40341101); c = md5_ff(c, d, a, b, x[i+14], 17, -1502002290); b = md5_ff(b, c, d, a, x[i+15], 22, 1236535329); a = md5_gg(a, b, c, d, x[i+ 1], 5 , -165796510); d = md5_gg(d, a, b, c, x[i+ 6], 9 , -1069501632); c = md5_gg(c, d, a, b, x[i+11], 14, 643717713); b = md5_gg(b, c, d, a, x[i+ 0], 20, -373897302); a = md5_gg(a, b, c, d, x[i+ 5], 5 , -701558691); d = md5_gg(d, a, b, c, x[i+10], 9 , 38016083); c = md5_gg(c, d, a, b, x[i+15], 14, -660478335); b = md5_gg(b, c, d, a, x[i+ 4], 20, -405537848); a = md5_gg(a, b, c, d, x[i+ 9], 5 , 568446438); d = md5_gg(d, a, b, c, x[i+14], 9 , -1019803690); c = md5_gg(c, d, a, b, x[i+ 3], 14, -187363961); b = md5_gg(b, c, d, a, x[i+ 8], 20, 1163531501); a = md5_gg(a, b, c, d, x[i+13], 5 , -1444681467); d = md5_gg(d, a, b, c, x[i+ 2], 9 , -51403784); c = md5_gg(c, d, a, b, x[i+ 7], 14, 1735328473); b = md5_gg(b, c, d, a, x[i+12], 20, -1926607734); a = md5_hh(a, b, c, d, x[i+ 5], 4 , -378558); d = md5_hh(d, a, b, c, x[i+ 8], 11, -2022574463); c = md5_hh(c, d, a, b, x[i+11], 16, 1839030562); b = md5_hh(b, c, d, a, x[i+14], 23, -35309556); a = md5_hh(a, b, c, d, x[i+ 1], 4 , -1530992060); d = md5_hh(d, a, b, c, x[i+ 4], 11, 1272893353); c = md5_hh(c, d, a, b, x[i+ 7], 16, -155497632); b = md5_hh(b, c, d, a, x[i+10], 23, -1094730640); a = md5_hh(a, b, c, d, x[i+13], 4 , 681279174); d = md5_hh(d, a, b, c, x[i+ 0], 11, -358537222); c = md5_hh(c, d, a, b, x[i+ 3], 16, -722521979); b = md5_hh(b, c, d, a, x[i+ 6], 23, 76029189); a = md5_hh(a, b, c, d, x[i+ 9], 4 , -640364487); d = md5_hh(d, a, b, c, x[i+12], 11, -421815835); c = md5_hh(c, d, a, b, x[i+15], 16, 530742520); b = md5_hh(b, c, d, a, x[i+ 2], 23, -995338651); a = md5_ii(a, b, c, d, x[i+ 0], 6 , -198630844); d = md5_ii(d, a, b, c, x[i+ 7], 10, 1126891415); c = md5_ii(c, d, a, b, x[i+14], 15, -1416354905); b = md5_ii(b, c, d, a, x[i+ 5], 21, -57434055); a = md5_ii(a, b, c, d, x[i+12], 6 , 1700485571); d = md5_ii(d, a, b, c, x[i+ 3], 10, -1894986606); c = md5_ii(c, d, a, b, x[i+10], 15, -1051523); b = md5_ii(b, c, d, a, x[i+ 1], 21, -2054922799); a = md5_ii(a, b, c, d, x[i+ 8], 6 , 1873313359); d = md5_ii(d, a, b, c, x[i+15], 10, -30611744); c = md5_ii(c, d, a, b, x[i+ 6], 15, -1560198380); b = md5_ii(b, c, d, a, x[i+13], 21, 1309151649); a = md5_ii(a, b, c, d, x[i+ 4], 6 , -145523070); d = md5_ii(d, a, b, c, x[i+11], 10, -1120210379); c = md5_ii(c, d, a, b, x[i+ 2], 15, 718787259); b = md5_ii(b, c, d, a, x[i+ 9], 21, -343485551); a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); } return Array(a, b, c, d); } /* * These functions implement the four basic operations the algorithm uses. */ function md5_cmn(q, a, b, x, s, t) { return safe_add(bit_rol(safe_add(safe_add(a, q), safe_add(x, t)), s),b); } function md5_ff(a, b, c, d, x, s, t) { return md5_cmn((b & c) | ((~b) & d), a, b, x, s, t); } function md5_gg(a, b, c, d, x, s, t) { return md5_cmn((b & d) | (c & (~d)), a, b, x, s, t); } function md5_hh(a, b, c, d, x, s, t) { return md5_cmn(b ^ c ^ d, a, b, x, s, t); } function md5_ii(a, b, c, d, x, s, t) { return md5_cmn(c ^ (b | (~d)), a, b, x, s, t); } /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ function safe_add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /* * Bitwise rotate a 32-bit number to the left. */ function bit_rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } module.exports = function md5(buf) { return helpers.hash(buf, core_md5, 16); }; },{"./helpers":10}],13:[function(require,module,exports){ // Original code adapted from Robert Kieffer. // details at https://github.com/broofa/node-uuid (function() { var _global = this; var mathRNG, whatwgRNG; // NOTE: Math.random() does not guarantee "cryptographic quality" mathRNG = function(size) { var bytes = new Array(size); var r; for (var i = 0, r; i < size; i++) { if ((i & 0x03) == 0) r = Math.random() * 0x100000000; bytes[i] = r >>> ((i & 0x03) << 3) & 0xff; } return bytes; } if (_global.crypto && crypto.getRandomValues) { whatwgRNG = function(size) { var bytes = new Uint8Array(size); crypto.getRandomValues(bytes); return bytes; } } module.exports = whatwgRNG || mathRNG; }()) },{}],14:[function(require,module,exports){ /* * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined * in FIPS PUB 180-1 * Version 2.1a Copyright Paul Johnston 2000 - 2002. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See http://pajhome.org.uk/crypt/md5 for details. */ var helpers = require('./helpers'); /* * Calculate the SHA-1 of an array of big-endian words, and a bit length */ function core_sha1(x, len) { /* append padding */ x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for(var j = 0; j < 80; j++) { if(j < 16) w[j] = x[i + j]; else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j))); e = d; d = c; c = rol(b, 30); b = a; a = t; } a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); e = safe_add(e, olde); } return Array(a, b, c, d, e); } /* * Perform the appropriate triplet combination function for the current * iteration */ function sha1_ft(t, b, c, d) { if(t < 20) return (b & c) | ((~b) & d); if(t < 40) return b ^ c ^ d; if(t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d; } /* * Determine the appropriate additive constant for the current iteration */ function sha1_kt(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514; } /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ function safe_add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /* * Bitwise rotate a 32-bit number to the left. */ function rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } module.exports = function sha1(buf) { return helpers.hash(buf, core_sha1, 20, true); }; },{"./helpers":10}],15:[function(require,module,exports){ /** * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined * in FIPS 180-2 * Version 2.2-beta Copyright Angel Marin, Paul Johnston 2000 - 2009. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * */ var helpers = require('./helpers'); var safe_add = function(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); }; var S = function(X, n) { return (X >>> n) | (X << (32 - n)); }; var R = function(X, n) { return (X >>> n); }; var Ch = function(x, y, z) { return ((x & y) ^ ((~x) & z)); }; var Maj = function(x, y, z) { return ((x & y) ^ (x & z) ^ (y & z)); }; var Sigma0256 = function(x) { return (S(x, 2) ^ S(x, 13) ^ S(x, 22)); }; var Sigma1256 = function(x) { return (S(x, 6) ^ S(x, 11) ^ S(x, 25)); }; var Gamma0256 = function(x) { return (S(x, 7) ^ S(x, 18) ^ R(x, 3)); }; var Gamma1256 = function(x) { return (S(x, 17) ^ S(x, 19) ^ R(x, 10)); }; var core_sha256 = function(m, l) { var K = new Array(0x428A2F98,0x71374491,0xB5C0FBCF,0xE9B5DBA5,0x3956C25B,0x59F111F1,0x923F82A4,0xAB1C5ED5,0xD807AA98,0x12835B01,0x243185BE,0x550C7DC3,0x72BE5D74,0x80DEB1FE,0x9BDC06A7,0xC19BF174,0xE49B69C1,0xEFBE4786,0xFC19DC6,0x240CA1CC,0x2DE92C6F,0x4A7484AA,0x5CB0A9DC,0x76F988DA,0x983E5152,0xA831C66D,0xB00327C8,0xBF597FC7,0xC6E00BF3,0xD5A79147,0x6CA6351,0x14292967,0x27B70A85,0x2E1B2138,0x4D2C6DFC,0x53380D13,0x650A7354,0x766A0ABB,0x81C2C92E,0x92722C85,0xA2BFE8A1,0xA81A664B,0xC24B8B70,0xC76C51A3,0xD192E819,0xD6990624,0xF40E3585,0x106AA070,0x19A4C116,0x1E376C08,0x2748774C,0x34B0BCB5,0x391C0CB3,0x4ED8AA4A,0x5B9CCA4F,0x682E6FF3,0x748F82EE,0x78A5636F,0x84C87814,0x8CC70208,0x90BEFFFA,0xA4506CEB,0xBEF9A3F7,0xC67178F2); var HASH = new Array(0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19); var W = new Array(64); var a, b, c, d, e, f, g, h, i, j; var T1, T2; /* append padding */ m[l >> 5] |= 0x80 << (24 - l % 32); m[((l + 64 >> 9) << 4) + 15] = l; for (var i = 0; i < m.length; i += 16) { a = HASH[0]; b = HASH[1]; c = HASH[2]; d = HASH[3]; e = HASH[4]; f = HASH[5]; g = HASH[6]; h = HASH[7]; for (var j = 0; j < 64; j++) { if (j < 16) { W[j] = m[j + i]; } else { W[j] = safe_add(safe_add(safe_add(Gamma1256(W[j - 2]), W[j - 7]), Gamma0256(W[j - 15])), W[j - 16]); } T1 = safe_add(safe_add(safe_add(safe_add(h, Sigma1256(e)), Ch(e, f, g)), K[j]), W[j]); T2 = safe_add(Sigma0256(a), Maj(a, b, c)); h = g; g = f; f = e; e = safe_add(d, T1); d = c; c = b; b = a; a = safe_add(T1, T2); } HASH[0] = safe_add(a, HASH[0]); HASH[1] = safe_add(b, HASH[1]); HASH[2] = safe_add(c, HASH[2]); HASH[3] = safe_add(d, HASH[3]); HASH[4] = safe_add(e, HASH[4]); HASH[5] = safe_add(f, HASH[5]); HASH[6] = safe_add(g, HASH[6]); HASH[7] = safe_add(h, HASH[7]); } return HASH; }; module.exports = function sha256(buf) { return helpers.hash(buf, core_sha256, 32, true); }; },{"./helpers":10}],16:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core"), require("./enc-base64"), require("./md5"), require("./evpkdf"), require("./cipher-core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var BlockCipher = C_lib.BlockCipher; var C_algo = C.algo; // Lookup tables var SBOX = []; var INV_SBOX = []; var SUB_MIX_0 = []; var SUB_MIX_1 = []; var SUB_MIX_2 = []; var SUB_MIX_3 = []; var INV_SUB_MIX_0 = []; var INV_SUB_MIX_1 = []; var INV_SUB_MIX_2 = []; var INV_SUB_MIX_3 = []; // Compute lookup tables (function () { // Compute double table var d = []; for (var i = 0; i < 256; i++) { if (i < 128) { d[i] = i << 1; } else { d[i] = (i << 1) ^ 0x11b; } } // Walk GF(2^8) var x = 0; var xi = 0; for (var i = 0; i < 256; i++) { // Compute sbox var sx = xi ^ (xi << 1) ^ (xi << 2) ^ (xi << 3) ^ (xi << 4); sx = (sx >>> 8) ^ (sx & 0xff) ^ 0x63; SBOX[x] = sx; INV_SBOX[sx] = x; // Compute multiplication var x2 = d[x]; var x4 = d[x2]; var x8 = d[x4]; // Compute sub bytes, mix columns tables var t = (d[sx] * 0x101) ^ (sx * 0x1010100); SUB_MIX_0[x] = (t << 24) | (t >>> 8); SUB_MIX_1[x] = (t << 16) | (t >>> 16); SUB_MIX_2[x] = (t << 8) | (t >>> 24); SUB_MIX_3[x] = t; // Compute inv sub bytes, inv mix columns tables var t = (x8 * 0x1010101) ^ (x4 * 0x10001) ^ (x2 * 0x101) ^ (x * 0x1010100); INV_SUB_MIX_0[sx] = (t << 24) | (t >>> 8); INV_SUB_MIX_1[sx] = (t << 16) | (t >>> 16); INV_SUB_MIX_2[sx] = (t << 8) | (t >>> 24); INV_SUB_MIX_3[sx] = t; // Compute next counter if (!x) { x = xi = 1; } else { x = x2 ^ d[d[d[x8 ^ x2]]]; xi ^= d[d[xi]]; } } }()); // Precomputed Rcon lookup var RCON = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36]; /** * AES block cipher algorithm. */ var AES = C_algo.AES = BlockCipher.extend({ _doReset: function () { // Skip reset of nRounds has been set before and key did not change if (this._nRounds && this._keyPriorReset === this._key) { return; } // Shortcuts var key = this._keyPriorReset = this._key; var keyWords = key.words; var keySize = key.sigBytes / 4; // Compute number of rounds var nRounds = this._nRounds = keySize + 6; // Compute number of key schedule rows var ksRows = (nRounds + 1) * 4; // Compute key schedule var keySchedule = this._keySchedule = []; for (var ksRow = 0; ksRow < ksRows; ksRow++) { if (ksRow < keySize) { keySchedule[ksRow] = keyWords[ksRow]; } else { var t = keySchedule[ksRow - 1]; if (!(ksRow % keySize)) { // Rot word t = (t << 8) | (t >>> 24); // Sub word t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff]; // Mix Rcon t ^= RCON[(ksRow / keySize) | 0] << 24; } else if (keySize > 6 && ksRow % keySize == 4) { // Sub word t = (SBOX[t >>> 24] << 24) | (SBOX[(t >>> 16) & 0xff] << 16) | (SBOX[(t >>> 8) & 0xff] << 8) | SBOX[t & 0xff]; } keySchedule[ksRow] = keySchedule[ksRow - keySize] ^ t; } } // Compute inv key schedule var invKeySchedule = this._invKeySchedule = []; for (var invKsRow = 0; invKsRow < ksRows; invKsRow++) { var ksRow = ksRows - invKsRow; if (invKsRow % 4) { var t = keySchedule[ksRow]; } else { var t = keySchedule[ksRow - 4]; } if (invKsRow < 4 || ksRow <= 4) { invKeySchedule[invKsRow] = t; } else { invKeySchedule[invKsRow] = INV_SUB_MIX_0[SBOX[t >>> 24]] ^ INV_SUB_MIX_1[SBOX[(t >>> 16) & 0xff]] ^ INV_SUB_MIX_2[SBOX[(t >>> 8) & 0xff]] ^ INV_SUB_MIX_3[SBOX[t & 0xff]]; } } }, encryptBlock: function (M, offset) { this._doCryptBlock(M, offset, this._keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX); }, decryptBlock: function (M, offset) { // Swap 2nd and 4th rows var t = M[offset + 1]; M[offset + 1] = M[offset + 3]; M[offset + 3] = t; this._doCryptBlock(M, offset, this._invKeySchedule, INV_SUB_MIX_0, INV_SUB_MIX_1, INV_SUB_MIX_2, INV_SUB_MIX_3, INV_SBOX); // Inv swap 2nd and 4th rows var t = M[offset + 1]; M[offset + 1] = M[offset + 3]; M[offset + 3] = t; }, _doCryptBlock: function (M, offset, keySchedule, SUB_MIX_0, SUB_MIX_1, SUB_MIX_2, SUB_MIX_3, SBOX) { // Shortcut var nRounds = this._nRounds; // Get input, add round key var s0 = M[offset] ^ keySchedule[0]; var s1 = M[offset + 1] ^ keySchedule[1]; var s2 = M[offset + 2] ^ keySchedule[2]; var s3 = M[offset + 3] ^ keySchedule[3]; // Key schedule row counter var ksRow = 4; // Rounds for (var round = 1; round < nRounds; round++) { // Shift rows, sub bytes, mix columns, add round key var t0 = SUB_MIX_0[s0 >>> 24] ^ SUB_MIX_1[(s1 >>> 16) & 0xff] ^ SUB_MIX_2[(s2 >>> 8) & 0xff] ^ SUB_MIX_3[s3 & 0xff] ^ keySchedule[ksRow++]; var t1 = SUB_MIX_0[s1 >>> 24] ^ SUB_MIX_1[(s2 >>> 16) & 0xff] ^ SUB_MIX_2[(s3 >>> 8) & 0xff] ^ SUB_MIX_3[s0 & 0xff] ^ keySchedule[ksRow++]; var t2 = SUB_MIX_0[s2 >>> 24] ^ SUB_MIX_1[(s3 >>> 16) & 0xff] ^ SUB_MIX_2[(s0 >>> 8) & 0xff] ^ SUB_MIX_3[s1 & 0xff] ^ keySchedule[ksRow++]; var t3 = SUB_MIX_0[s3 >>> 24] ^ SUB_MIX_1[(s0 >>> 16) & 0xff] ^ SUB_MIX_2[(s1 >>> 8) & 0xff] ^ SUB_MIX_3[s2 & 0xff] ^ keySchedule[ksRow++]; // Update state s0 = t0; s1 = t1; s2 = t2; s3 = t3; } // Shift rows, sub bytes, add round key var t0 = ((SBOX[s0 >>> 24] << 24) | (SBOX[(s1 >>> 16) & 0xff] << 16) | (SBOX[(s2 >>> 8) & 0xff] << 8) | SBOX[s3 & 0xff]) ^ keySchedule[ksRow++]; var t1 = ((SBOX[s1 >>> 24] << 24) | (SBOX[(s2 >>> 16) & 0xff] << 16) | (SBOX[(s3 >>> 8) & 0xff] << 8) | SBOX[s0 & 0xff]) ^ keySchedule[ksRow++]; var t2 = ((SBOX[s2 >>> 24] << 24) | (SBOX[(s3 >>> 16) & 0xff] << 16) | (SBOX[(s0 >>> 8) & 0xff] << 8) | SBOX[s1 & 0xff]) ^ keySchedule[ksRow++]; var t3 = ((SBOX[s3 >>> 24] << 24) | (SBOX[(s0 >>> 16) & 0xff] << 16) | (SBOX[(s1 >>> 8) & 0xff] << 8) | SBOX[s2 & 0xff]) ^ keySchedule[ksRow++]; // Set output M[offset] = t0; M[offset + 1] = t1; M[offset + 2] = t2; M[offset + 3] = t3; }, keySize: 256/32 }); /** * Shortcut functions to the cipher's object interface. * * @example * * var ciphertext = CryptoJS.AES.encrypt(message, key, cfg); * var plaintext = CryptoJS.AES.decrypt(ciphertext, key, cfg); */ C.AES = BlockCipher._createHelper(AES); }()); return CryptoJS.AES; })); },{"./cipher-core":17,"./core":18,"./enc-base64":19,"./evpkdf":23,"./md5":26}],17:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { /** * Cipher core components. */ CryptoJS.lib.Cipher || (function (undefined) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var WordArray = C_lib.WordArray; var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var Base64 = C_enc.Base64; var C_algo = C.algo; var EvpKDF = C_algo.EvpKDF; /** * Abstract base cipher template. * * @property {number} keySize This cipher's key size. Default: 4 (128 bits) * @property {number} ivSize This cipher's IV size. Default: 4 (128 bits) * @property {number} _ENC_XFORM_MODE A constant representing encryption mode. * @property {number} _DEC_XFORM_MODE A constant representing decryption mode. */ var Cipher = C_lib.Cipher = BufferedBlockAlgorithm.extend({ /** * Configuration options. * * @property {WordArray} iv The IV to use for this operation. */ cfg: Base.extend(), /** * Creates this cipher in encryption mode. * * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {Cipher} A cipher instance. * * @static * * @example * * var cipher = CryptoJS.algo.AES.createEncryptor(keyWordArray, { iv: ivWordArray }); */ createEncryptor: function (key, cfg) { return this.create(this._ENC_XFORM_MODE, key, cfg); }, /** * Creates this cipher in decryption mode. * * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {Cipher} A cipher instance. * * @static * * @example * * var cipher = CryptoJS.algo.AES.createDecryptor(keyWordArray, { iv: ivWordArray }); */ createDecryptor: function (key, cfg) { return this.create(this._DEC_XFORM_MODE, key, cfg); }, /** * Initializes a newly created cipher. * * @param {number} xformMode Either the encryption or decryption transormation mode constant. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @example * * var cipher = CryptoJS.algo.AES.create(CryptoJS.algo.AES._ENC_XFORM_MODE, keyWordArray, { iv: ivWordArray }); */ init: function (xformMode, key, cfg) { // Apply config defaults this.cfg = this.cfg.extend(cfg); // Store transform mode and key this._xformMode = xformMode; this._key = key; // Set initial values this.reset(); }, /** * Resets this cipher to its initial state. * * @example * * cipher.reset(); */ reset: function () { // Reset data buffer BufferedBlockAlgorithm.reset.call(this); // Perform concrete-cipher logic this._doReset(); }, /** * Adds data to be encrypted or decrypted. * * @param {WordArray|string} dataUpdate The data to encrypt or decrypt. * * @return {WordArray} The data after processing. * * @example * * var encrypted = cipher.process('data'); * var encrypted = cipher.process(wordArray); */ process: function (dataUpdate) { // Append this._append(dataUpdate); // Process available blocks return this._process(); }, /** * Finalizes the encryption or decryption process. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} dataUpdate The final data to encrypt or decrypt. * * @return {WordArray} The data after final processing. * * @example * * var encrypted = cipher.finalize(); * var encrypted = cipher.finalize('data'); * var encrypted = cipher.finalize(wordArray); */ finalize: function (dataUpdate) { // Final data update if (dataUpdate) { this._append(dataUpdate); } // Perform concrete-cipher logic var finalProcessedData = this._doFinalize(); return finalProcessedData; }, keySize: 128/32, ivSize: 128/32, _ENC_XFORM_MODE: 1, _DEC_XFORM_MODE: 2, /** * Creates shortcut functions to a cipher's object interface. * * @param {Cipher} cipher The cipher to create a helper for. * * @return {Object} An object with encrypt and decrypt shortcut functions. * * @static * * @example * * var AES = CryptoJS.lib.Cipher._createHelper(CryptoJS.algo.AES); */ _createHelper: (function () { function selectCipherStrategy(key) { if (typeof key == 'string') { return PasswordBasedCipher; } else { return SerializableCipher; } } return function (cipher) { return { encrypt: function (message, key, cfg) { return selectCipherStrategy(key).encrypt(cipher, message, key, cfg); }, decrypt: function (ciphertext, key, cfg) { return selectCipherStrategy(key).decrypt(cipher, ciphertext, key, cfg); } }; }; }()) }); /** * Abstract base stream cipher template. * * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 1 (32 bits) */ var StreamCipher = C_lib.StreamCipher = Cipher.extend({ _doFinalize: function () { // Process partial blocks var finalProcessedBlocks = this._process(!!'flush'); return finalProcessedBlocks; }, blockSize: 1 }); /** * Mode namespace. */ var C_mode = C.mode = {}; /** * Abstract base block cipher mode template. */ var BlockCipherMode = C_lib.BlockCipherMode = Base.extend({ /** * Creates this mode for encryption. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @static * * @example * * var mode = CryptoJS.mode.CBC.createEncryptor(cipher, iv.words); */ createEncryptor: function (cipher, iv) { return this.Encryptor.create(cipher, iv); }, /** * Creates this mode for decryption. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @static * * @example * * var mode = CryptoJS.mode.CBC.createDecryptor(cipher, iv.words); */ createDecryptor: function (cipher, iv) { return this.Decryptor.create(cipher, iv); }, /** * Initializes a newly created mode. * * @param {Cipher} cipher A block cipher instance. * @param {Array} iv The IV words. * * @example * * var mode = CryptoJS.mode.CBC.Encryptor.create(cipher, iv.words); */ init: function (cipher, iv) { this._cipher = cipher; this._iv = iv; } }); /** * Cipher Block Chaining mode. */ var CBC = C_mode.CBC = (function () { /** * Abstract base CBC mode. */ var CBC = BlockCipherMode.extend(); /** * CBC encryptor. */ CBC.Encryptor = CBC.extend({ /** * Processes the data block at offset. * * @param {Array} words The data words to operate on. * @param {number} offset The offset where the block starts. * * @example * * mode.processBlock(data.words, offset); */ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher; var blockSize = cipher.blockSize; // XOR and encrypt xorBlock.call(this, words, offset, blockSize); cipher.encryptBlock(words, offset); // Remember this block to use with next block this._prevBlock = words.slice(offset, offset + blockSize); } }); /** * CBC decryptor. */ CBC.Decryptor = CBC.extend({ /** * Processes the data block at offset. * * @param {Array} words The data words to operate on. * @param {number} offset The offset where the block starts. * * @example * * mode.processBlock(data.words, offset); */ processBlock: function (words, offset) { // Shortcuts var cipher = this._cipher; var blockSize = cipher.blockSize; // Remember this block to use with next block var thisBlock = words.slice(offset, offset + blockSize); // Decrypt and XOR cipher.decryptBlock(words, offset); xorBlock.call(this, words, offset, blockSize); // This block becomes the previous block this._prevBlock = thisBlock; } }); function xorBlock(words, offset, blockSize) { // Shortcut var iv = this._iv; // Choose mixing block if (iv) { var block = iv; // Remove IV for subsequent blocks this._iv = undefined; } else { var block = this._prevBlock; } // XOR blocks for (var i = 0; i < blockSize; i++) { words[offset + i] ^= block[i]; } } return CBC; }()); /** * Padding namespace. */ var C_pad = C.pad = {}; /** * PKCS #5/7 padding strategy. */ var Pkcs7 = C_pad.Pkcs7 = { /** * Pads data using the algorithm defined in PKCS #5/7. * * @param {WordArray} data The data to pad. * @param {number} blockSize The multiple that the data should be padded to. * * @static * * @example * * CryptoJS.pad.Pkcs7.pad(wordArray, 4); */ pad: function (data, blockSize) { // Shortcut var blockSizeBytes = blockSize * 4; // Count padding bytes var nPaddingBytes = blockSizeBytes - data.sigBytes % blockSizeBytes; // Create padding word var paddingWord = (nPaddingBytes << 24) | (nPaddingBytes << 16) | (nPaddingBytes << 8) | nPaddingBytes; // Create padding var paddingWords = []; for (var i = 0; i < nPaddingBytes; i += 4) { paddingWords.push(paddingWord); } var padding = WordArray.create(paddingWords, nPaddingBytes); // Add padding data.concat(padding); }, /** * Unpads data that had been padded using the algorithm defined in PKCS #5/7. * * @param {WordArray} data The data to unpad. * * @static * * @example * * CryptoJS.pad.Pkcs7.unpad(wordArray); */ unpad: function (data) { // Get number of padding bytes from last byte var nPaddingBytes = data.words[(data.sigBytes - 1) >>> 2] & 0xff; // Remove padding data.sigBytes -= nPaddingBytes; } }; /** * Abstract base block cipher template. * * @property {number} blockSize The number of 32-bit words this cipher operates on. Default: 4 (128 bits) */ var BlockCipher = C_lib.BlockCipher = Cipher.extend({ /** * Configuration options. * * @property {Mode} mode The block mode to use. Default: CBC * @property {Padding} padding The padding strategy to use. Default: Pkcs7 */ cfg: Cipher.cfg.extend({ mode: CBC, padding: Pkcs7 }), reset: function () { // Reset cipher Cipher.reset.call(this); // Shortcuts var cfg = this.cfg; var iv = cfg.iv; var mode = cfg.mode; // Reset block mode if (this._xformMode == this._ENC_XFORM_MODE) { var modeCreator = mode.createEncryptor; } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ { var modeCreator = mode.createDecryptor; // Keep at least one block in the buffer for unpadding this._minBufferSize = 1; } this._mode = modeCreator.call(mode, this, iv && iv.words); }, _doProcessBlock: function (words, offset) { this._mode.processBlock(words, offset); }, _doFinalize: function () { // Shortcut var padding = this.cfg.padding; // Finalize if (this._xformMode == this._ENC_XFORM_MODE) { // Pad data padding.pad(this._data, this.blockSize); // Process final blocks var finalProcessedBlocks = this._process(!!'flush'); } else /* if (this._xformMode == this._DEC_XFORM_MODE) */ { // Process final blocks var finalProcessedBlocks = this._process(!!'flush'); // Unpad data padding.unpad(finalProcessedBlocks); } return finalProcessedBlocks; }, blockSize: 128/32 }); /** * A collection of cipher parameters. * * @property {WordArray} ciphertext The raw ciphertext. * @property {WordArray} key The key to this ciphertext. * @property {WordArray} iv The IV used in the ciphering operation. * @property {WordArray} salt The salt used with a key derivation function. * @property {Cipher} algorithm The cipher algorithm. * @property {Mode} mode The block mode used in the ciphering operation. * @property {Padding} padding The padding scheme used in the ciphering operation. * @property {number} blockSize The block size of the cipher. * @property {Format} formatter The default formatting strategy to convert this cipher params object to a string. */ var CipherParams = C_lib.CipherParams = Base.extend({ /** * Initializes a newly created cipher params object. * * @param {Object} cipherParams An object with any of the possible cipher parameters. * * @example * * var cipherParams = CryptoJS.lib.CipherParams.create({ * ciphertext: ciphertextWordArray, * key: keyWordArray, * iv: ivWordArray, * salt: saltWordArray, * algorithm: CryptoJS.algo.AES, * mode: CryptoJS.mode.CBC, * padding: CryptoJS.pad.PKCS7, * blockSize: 4, * formatter: CryptoJS.format.OpenSSL * }); */ init: function (cipherParams) { this.mixIn(cipherParams); }, /** * Converts this cipher params object to a string. * * @param {Format} formatter (Optional) The formatting strategy to use. * * @return {string} The stringified cipher params. * * @throws Error If neither the formatter nor the default formatter is set. * * @example * * var string = cipherParams + ''; * var string = cipherParams.toString(); * var string = cipherParams.toString(CryptoJS.format.OpenSSL); */ toString: function (formatter) { return (formatter || this.formatter).stringify(this); } }); /** * Format namespace. */ var C_format = C.format = {}; /** * OpenSSL formatting strategy. */ var OpenSSLFormatter = C_format.OpenSSL = { /** * Converts a cipher params object to an OpenSSL-compatible string. * * @param {CipherParams} cipherParams The cipher params object. * * @return {string} The OpenSSL-compatible string. * * @static * * @example * * var openSSLString = CryptoJS.format.OpenSSL.stringify(cipherParams); */ stringify: function (cipherParams) { // Shortcuts var ciphertext = cipherParams.ciphertext; var salt = cipherParams.salt; // Format if (salt) { var wordArray = WordArray.create([0x53616c74, 0x65645f5f]).concat(salt).concat(ciphertext); } else { var wordArray = ciphertext; } return wordArray.toString(Base64); }, /** * Converts an OpenSSL-compatible string to a cipher params object. * * @param {string} openSSLStr The OpenSSL-compatible string. * * @return {CipherParams} The cipher params object. * * @static * * @example * * var cipherParams = CryptoJS.format.OpenSSL.parse(openSSLString); */ parse: function (openSSLStr) { // Parse base64 var ciphertext = Base64.parse(openSSLStr); // Shortcut var ciphertextWords = ciphertext.words; // Test for salt if (ciphertextWords[0] == 0x53616c74 && ciphertextWords[1] == 0x65645f5f) { // Extract salt var salt = WordArray.create(ciphertextWords.slice(2, 4)); // Remove salt from ciphertext ciphertextWords.splice(0, 4); ciphertext.sigBytes -= 16; } return CipherParams.create({ ciphertext: ciphertext, salt: salt }); } }; /** * A cipher wrapper that returns ciphertext as a serializable cipher params object. */ var SerializableCipher = C_lib.SerializableCipher = Base.extend({ /** * Configuration options. * * @property {Formatter} format The formatting strategy to convert cipher param objects to and from a string. Default: OpenSSL */ cfg: Base.extend({ format: OpenSSLFormatter }), /** * Encrypts a message. * * @param {Cipher} cipher The cipher algorithm to use. * @param {WordArray|string} message The message to encrypt. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {CipherParams} A cipher params object. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key); * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv }); * var ciphertextParams = CryptoJS.lib.SerializableCipher.encrypt(CryptoJS.algo.AES, message, key, { iv: iv, format: CryptoJS.format.OpenSSL }); */ encrypt: function (cipher, message, key, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Encrypt var encryptor = cipher.createEncryptor(key, cfg); var ciphertext = encryptor.finalize(message); // Shortcut var cipherCfg = encryptor.cfg; // Create and return serializable cipher params return CipherParams.create({ ciphertext: ciphertext, key: key, iv: cipherCfg.iv, algorithm: cipher, mode: cipherCfg.mode, padding: cipherCfg.padding, blockSize: cipher.blockSize, formatter: cfg.format }); }, /** * Decrypts serialized ciphertext. * * @param {Cipher} cipher The cipher algorithm to use. * @param {CipherParams|string} ciphertext The ciphertext to decrypt. * @param {WordArray} key The key. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {WordArray} The plaintext. * * @static * * @example * * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, key, { iv: iv, format: CryptoJS.format.OpenSSL }); * var plaintext = CryptoJS.lib.SerializableCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, key, { iv: iv, format: CryptoJS.format.OpenSSL }); */ decrypt: function (cipher, ciphertext, key, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Convert string to CipherParams ciphertext = this._parse(ciphertext, cfg.format); // Decrypt var plaintext = cipher.createDecryptor(key, cfg).finalize(ciphertext.ciphertext); return plaintext; }, /** * Converts serialized ciphertext to CipherParams, * else assumed CipherParams already and returns ciphertext unchanged. * * @param {CipherParams|string} ciphertext The ciphertext. * @param {Formatter} format The formatting strategy to use to parse serialized ciphertext. * * @return {CipherParams} The unserialized ciphertext. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.SerializableCipher._parse(ciphertextStringOrParams, format); */ _parse: function (ciphertext, format) { if (typeof ciphertext == 'string') { return format.parse(ciphertext, this); } else { return ciphertext; } } }); /** * Key derivation function namespace. */ var C_kdf = C.kdf = {}; /** * OpenSSL key derivation function. */ var OpenSSLKdf = C_kdf.OpenSSL = { /** * Derives a key and IV from a password. * * @param {string} password The password to derive from. * @param {number} keySize The size in words of the key to generate. * @param {number} ivSize The size in words of the IV to generate. * @param {WordArray|string} salt (Optional) A 64-bit salt to use. If omitted, a salt will be generated randomly. * * @return {CipherParams} A cipher params object with the key, IV, and salt. * * @static * * @example * * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32); * var derivedParams = CryptoJS.kdf.OpenSSL.execute('Password', 256/32, 128/32, 'saltsalt'); */ execute: function (password, keySize, ivSize, salt) { // Generate random salt if (!salt) { salt = WordArray.random(64/8); } // Derive key and IV var key = EvpKDF.create({ keySize: keySize + ivSize }).compute(password, salt); // Separate key and IV var iv = WordArray.create(key.words.slice(keySize), ivSize * 4); key.sigBytes = keySize * 4; // Return params return CipherParams.create({ key: key, iv: iv, salt: salt }); } }; /** * A serializable cipher wrapper that derives the key from a password, * and returns ciphertext as a serializable cipher params object. */ var PasswordBasedCipher = C_lib.PasswordBasedCipher = SerializableCipher.extend({ /** * Configuration options. * * @property {KDF} kdf The key derivation function to use to generate a key and IV from a password. Default: OpenSSL */ cfg: SerializableCipher.cfg.extend({ kdf: OpenSSLKdf }), /** * Encrypts a message using a password. * * @param {Cipher} cipher The cipher algorithm to use. * @param {WordArray|string} message The message to encrypt. * @param {string} password The password. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {CipherParams} A cipher params object. * * @static * * @example * * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password'); * var ciphertextParams = CryptoJS.lib.PasswordBasedCipher.encrypt(CryptoJS.algo.AES, message, 'password', { format: CryptoJS.format.OpenSSL }); */ encrypt: function (cipher, message, password, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Derive key and other params var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize); // Add IV to config cfg.iv = derivedParams.iv; // Encrypt var ciphertext = SerializableCipher.encrypt.call(this, cipher, message, derivedParams.key, cfg); // Mix in derived params ciphertext.mixIn(derivedParams); return ciphertext; }, /** * Decrypts serialized ciphertext using a password. * * @param {Cipher} cipher The cipher algorithm to use. * @param {CipherParams|string} ciphertext The ciphertext to decrypt. * @param {string} password The password. * @param {Object} cfg (Optional) The configuration options to use for this operation. * * @return {WordArray} The plaintext. * * @static * * @example * * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, formattedCiphertext, 'password', { format: CryptoJS.format.OpenSSL }); * var plaintext = CryptoJS.lib.PasswordBasedCipher.decrypt(CryptoJS.algo.AES, ciphertextParams, 'password', { format: CryptoJS.format.OpenSSL }); */ decrypt: function (cipher, ciphertext, password, cfg) { // Apply config defaults cfg = this.cfg.extend(cfg); // Convert string to CipherParams ciphertext = this._parse(ciphertext, cfg.format); // Derive key and other params var derivedParams = cfg.kdf.execute(password, cipher.keySize, cipher.ivSize, ciphertext.salt); // Add IV to config cfg.iv = derivedParams.iv; // Decrypt var plaintext = SerializableCipher.decrypt.call(this, cipher, ciphertext, derivedParams.key, cfg); return plaintext; } }); }()); })); },{"./core":18}],18:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(); } else if (typeof define === "function" && define.amd) { // AMD define([], factory); } else { // Global (browser) root.CryptoJS = factory(); } }(this, function () { /** * CryptoJS core components. */ var CryptoJS = CryptoJS || (function (Math, undefined) { /* * Local polyfil of Object.create */ var create = Object.create || (function () { function F() {}; return function (obj) { var subtype; F.prototype = obj; subtype = new F(); F.prototype = null; return subtype; }; }()) /** * CryptoJS namespace. */ var C = {}; /** * Library namespace. */ var C_lib = C.lib = {}; /** * Base object for prototypal inheritance. */ var Base = C_lib.Base = (function () { return { /** * Creates a new object that inherits from this object. * * @param {Object} overrides Properties to copy into the new object. * * @return {Object} The new object. * * @static * * @example * * var MyType = CryptoJS.lib.Base.extend({ * field: 'value', * * method: function () { * } * }); */ extend: function (overrides) { // Spawn var subtype = create(this); // Augment if (overrides) { subtype.mixIn(overrides); } // Create default initializer if (!subtype.hasOwnProperty('init') || this.init === subtype.init) { subtype.init = function () { subtype.$super.init.apply(this, arguments); }; } // Initializer's prototype is the subtype object subtype.init.prototype = subtype; // Reference supertype subtype.$super = this; return subtype; }, /** * Extends this object and runs the init method. * Arguments to create() will be passed to init(). * * @return {Object} The new object. * * @static * * @example * * var instance = MyType.create(); */ create: function () { var instance = this.extend(); instance.init.apply(instance, arguments); return instance; }, /** * Initializes a newly created object. * Override this method to add some logic when your objects are created. * * @example * * var MyType = CryptoJS.lib.Base.extend({ * init: function () { * // ... * } * }); */ init: function () { }, /** * Copies properties into this object. * * @param {Object} properties The properties to mix in. * * @example * * MyType.mixIn({ * field: 'value' * }); */ mixIn: function (properties) { for (var propertyName in properties) { if (properties.hasOwnProperty(propertyName)) { this[propertyName] = properties[propertyName]; } } // IE won't copy toString using the loop above if (properties.hasOwnProperty('toString')) { this.toString = properties.toString; } }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = instance.clone(); */ clone: function () { return this.init.prototype.extend(this); } }; }()); /** * An array of 32-bit words. * * @property {Array} words The array of 32-bit words. * @property {number} sigBytes The number of significant bytes in this word array. */ var WordArray = C_lib.WordArray = Base.extend({ /** * Initializes a newly created word array. * * @param {Array} words (Optional) An array of 32-bit words. * @param {number} sigBytes (Optional) The number of significant bytes in the words. * * @example * * var wordArray = CryptoJS.lib.WordArray.create(); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607]); * var wordArray = CryptoJS.lib.WordArray.create([0x00010203, 0x04050607], 6); */ init: function (words, sigBytes) { words = this.words = words || []; if (sigBytes != undefined) { this.sigBytes = sigBytes; } else { this.sigBytes = words.length * 4; } }, /** * Converts this word array to a string. * * @param {Encoder} encoder (Optional) The encoding strategy to use. Default: CryptoJS.enc.Hex * * @return {string} The stringified word array. * * @example * * var string = wordArray + ''; * var string = wordArray.toString(); * var string = wordArray.toString(CryptoJS.enc.Utf8); */ toString: function (encoder) { return (encoder || Hex).stringify(this); }, /** * Concatenates a word array to this word array. * * @param {WordArray} wordArray The word array to append. * * @return {WordArray} This word array. * * @example * * wordArray1.concat(wordArray2); */ concat: function (wordArray) { // Shortcuts var thisWords = this.words; var thatWords = wordArray.words; var thisSigBytes = this.sigBytes; var thatSigBytes = wordArray.sigBytes; // Clamp excess bits this.clamp(); // Concat if (thisSigBytes % 4) { // Copy one byte at a time for (var i = 0; i < thatSigBytes; i++) { var thatByte = (thatWords[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; thisWords[(thisSigBytes + i) >>> 2] |= thatByte << (24 - ((thisSigBytes + i) % 4) * 8); } } else { // Copy one word at a time for (var i = 0; i < thatSigBytes; i += 4) { thisWords[(thisSigBytes + i) >>> 2] = thatWords[i >>> 2]; } } this.sigBytes += thatSigBytes; // Chainable return this; }, /** * Removes insignificant bits. * * @example * * wordArray.clamp(); */ clamp: function () { // Shortcuts var words = this.words; var sigBytes = this.sigBytes; // Clamp words[sigBytes >>> 2] &= 0xffffffff << (32 - (sigBytes % 4) * 8); words.length = Math.ceil(sigBytes / 4); }, /** * Creates a copy of this word array. * * @return {WordArray} The clone. * * @example * * var clone = wordArray.clone(); */ clone: function () { var clone = Base.clone.call(this); clone.words = this.words.slice(0); return clone; }, /** * Creates a word array filled with random bytes. * * @param {number} nBytes The number of random bytes to generate. * * @return {WordArray} The random word array. * * @static * * @example * * var wordArray = CryptoJS.lib.WordArray.random(16); */ random: function (nBytes) { var words = []; var r = (function (m_w) { var m_w = m_w; var m_z = 0x3ade68b1; var mask = 0xffffffff; return function () { m_z = (0x9069 * (m_z & 0xFFFF) + (m_z >> 0x10)) & mask; m_w = (0x4650 * (m_w & 0xFFFF) + (m_w >> 0x10)) & mask; var result = ((m_z << 0x10) + m_w) & mask; result /= 0x100000000; result += 0.5; return result * (Math.random() > .5 ? 1 : -1); } }); for (var i = 0, rcache; i < nBytes; i += 4) { var _r = r((rcache || Math.random()) * 0x100000000); rcache = _r() * 0x3ade67b7; words.push((_r() * 0x100000000) | 0); } return new WordArray.init(words, nBytes); } }); /** * Encoder namespace. */ var C_enc = C.enc = {}; /** * Hex encoding strategy. */ var Hex = C_enc.Hex = { /** * Converts a word array to a hex string. * * @param {WordArray} wordArray The word array. * * @return {string} The hex string. * * @static * * @example * * var hexString = CryptoJS.enc.Hex.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; // Convert var hexChars = []; for (var i = 0; i < sigBytes; i++) { var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; hexChars.push((bite >>> 4).toString(16)); hexChars.push((bite & 0x0f).toString(16)); } return hexChars.join(''); }, /** * Converts a hex string to a word array. * * @param {string} hexStr The hex string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Hex.parse(hexString); */ parse: function (hexStr) { // Shortcut var hexStrLength = hexStr.length; // Convert var words = []; for (var i = 0; i < hexStrLength; i += 2) { words[i >>> 3] |= parseInt(hexStr.substr(i, 2), 16) << (24 - (i % 8) * 4); } return new WordArray.init(words, hexStrLength / 2); } }; /** * Latin1 encoding strategy. */ var Latin1 = C_enc.Latin1 = { /** * Converts a word array to a Latin1 string. * * @param {WordArray} wordArray The word array. * * @return {string} The Latin1 string. * * @static * * @example * * var latin1String = CryptoJS.enc.Latin1.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; // Convert var latin1Chars = []; for (var i = 0; i < sigBytes; i++) { var bite = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; latin1Chars.push(String.fromCharCode(bite)); } return latin1Chars.join(''); }, /** * Converts a Latin1 string to a word array. * * @param {string} latin1Str The Latin1 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Latin1.parse(latin1String); */ parse: function (latin1Str) { // Shortcut var latin1StrLength = latin1Str.length; // Convert var words = []; for (var i = 0; i < latin1StrLength; i++) { words[i >>> 2] |= (latin1Str.charCodeAt(i) & 0xff) << (24 - (i % 4) * 8); } return new WordArray.init(words, latin1StrLength); } }; /** * UTF-8 encoding strategy. */ var Utf8 = C_enc.Utf8 = { /** * Converts a word array to a UTF-8 string. * * @param {WordArray} wordArray The word array. * * @return {string} The UTF-8 string. * * @static * * @example * * var utf8String = CryptoJS.enc.Utf8.stringify(wordArray); */ stringify: function (wordArray) { try { return decodeURIComponent(escape(Latin1.stringify(wordArray))); } catch (e) { throw new Error('Malformed UTF-8 data'); } }, /** * Converts a UTF-8 string to a word array. * * @param {string} utf8Str The UTF-8 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Utf8.parse(utf8String); */ parse: function (utf8Str) { return Latin1.parse(unescape(encodeURIComponent(utf8Str))); } }; /** * Abstract buffered block algorithm template. * * The property blockSize must be implemented in a concrete subtype. * * @property {number} _minBufferSize The number of blocks that should be kept unprocessed in the buffer. Default: 0 */ var BufferedBlockAlgorithm = C_lib.BufferedBlockAlgorithm = Base.extend({ /** * Resets this block algorithm's data buffer to its initial state. * * @example * * bufferedBlockAlgorithm.reset(); */ reset: function () { // Initial values this._data = new WordArray.init(); this._nDataBytes = 0; }, /** * Adds new data to this block algorithm's buffer. * * @param {WordArray|string} data The data to append. Strings are converted to a WordArray using UTF-8. * * @example * * bufferedBlockAlgorithm._append('data'); * bufferedBlockAlgorithm._append(wordArray); */ _append: function (data) { // Convert string to WordArray, else assume WordArray already if (typeof data == 'string') { data = Utf8.parse(data); } // Append this._data.concat(data); this._nDataBytes += data.sigBytes; }, /** * Processes available data blocks. * * This method invokes _doProcessBlock(offset), which must be implemented by a concrete subtype. * * @param {boolean} doFlush Whether all blocks and partial blocks should be processed. * * @return {WordArray} The processed data. * * @example * * var processedData = bufferedBlockAlgorithm._process(); * var processedData = bufferedBlockAlgorithm._process(!!'flush'); */ _process: function (doFlush) { // Shortcuts var data = this._data; var dataWords = data.words; var dataSigBytes = data.sigBytes; var blockSize = this.blockSize; var blockSizeBytes = blockSize * 4; // Count blocks ready var nBlocksReady = dataSigBytes / blockSizeBytes; if (doFlush) { // Round up to include partial blocks nBlocksReady = Math.ceil(nBlocksReady); } else { // Round down to include only full blocks, // less the number of blocks that must remain in the buffer nBlocksReady = Math.max((nBlocksReady | 0) - this._minBufferSize, 0); } // Count words ready var nWordsReady = nBlocksReady * blockSize; // Count bytes ready var nBytesReady = Math.min(nWordsReady * 4, dataSigBytes); // Process blocks if (nWordsReady) { for (var offset = 0; offset < nWordsReady; offset += blockSize) { // Perform concrete-algorithm logic this._doProcessBlock(dataWords, offset); } // Remove processed words var processedWords = dataWords.splice(0, nWordsReady); data.sigBytes -= nBytesReady; } // Return processed words return new WordArray.init(processedWords, nBytesReady); }, /** * Creates a copy of this object. * * @return {Object} The clone. * * @example * * var clone = bufferedBlockAlgorithm.clone(); */ clone: function () { var clone = Base.clone.call(this); clone._data = this._data.clone(); return clone; }, _minBufferSize: 0 }); /** * Abstract hasher template. * * @property {number} blockSize The number of 32-bit words this hasher operates on. Default: 16 (512 bits) */ var Hasher = C_lib.Hasher = BufferedBlockAlgorithm.extend({ /** * Configuration options. */ cfg: Base.extend(), /** * Initializes a newly created hasher. * * @param {Object} cfg (Optional) The configuration options to use for this hash computation. * * @example * * var hasher = CryptoJS.algo.SHA256.create(); */ init: function (cfg) { // Apply config defaults this.cfg = this.cfg.extend(cfg); // Set initial values this.reset(); }, /** * Resets this hasher to its initial state. * * @example * * hasher.reset(); */ reset: function () { // Reset data buffer BufferedBlockAlgorithm.reset.call(this); // Perform concrete-hasher logic this._doReset(); }, /** * Updates this hasher with a message. * * @param {WordArray|string} messageUpdate The message to append. * * @return {Hasher} This hasher. * * @example * * hasher.update('message'); * hasher.update(wordArray); */ update: function (messageUpdate) { // Append this._append(messageUpdate); // Update the hash this._process(); // Chainable return this; }, /** * Finalizes the hash computation. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} messageUpdate (Optional) A final message update. * * @return {WordArray} The hash. * * @example * * var hash = hasher.finalize(); * var hash = hasher.finalize('message'); * var hash = hasher.finalize(wordArray); */ finalize: function (messageUpdate) { // Final message update if (messageUpdate) { this._append(messageUpdate); } // Perform concrete-hasher logic var hash = this._doFinalize(); return hash; }, blockSize: 512/32, /** * Creates a shortcut function to a hasher's object interface. * * @param {Hasher} hasher The hasher to create a helper for. * * @return {Function} The shortcut function. * * @static * * @example * * var SHA256 = CryptoJS.lib.Hasher._createHelper(CryptoJS.algo.SHA256); */ _createHelper: function (hasher) { return function (message, cfg) { return new hasher.init(cfg).finalize(message); }; }, /** * Creates a shortcut function to the HMAC's object interface. * * @param {Hasher} hasher The hasher to use in this HMAC helper. * * @return {Function} The shortcut function. * * @static * * @example * * var HmacSHA256 = CryptoJS.lib.Hasher._createHmacHelper(CryptoJS.algo.SHA256); */ _createHmacHelper: function (hasher) { return function (message, key) { return new C_algo.HMAC.init(hasher, key).finalize(message); }; } }); /** * Algorithm namespace. */ var C_algo = C.algo = {}; return C; }(Math)); return CryptoJS; })); },{}],19:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var C_enc = C.enc; /** * Base64 encoding strategy. */ var Base64 = C_enc.Base64 = { /** * Converts a word array to a Base64 string. * * @param {WordArray} wordArray The word array. * * @return {string} The Base64 string. * * @static * * @example * * var base64String = CryptoJS.enc.Base64.stringify(wordArray); */ stringify: function (wordArray) { // Shortcuts var words = wordArray.words; var sigBytes = wordArray.sigBytes; var map = this._map; // Clamp excess bits wordArray.clamp(); // Convert var base64Chars = []; for (var i = 0; i < sigBytes; i += 3) { var byte1 = (words[i >>> 2] >>> (24 - (i % 4) * 8)) & 0xff; var byte2 = (words[(i + 1) >>> 2] >>> (24 - ((i + 1) % 4) * 8)) & 0xff; var byte3 = (words[(i + 2) >>> 2] >>> (24 - ((i + 2) % 4) * 8)) & 0xff; var triplet = (byte1 << 16) | (byte2 << 8) | byte3; for (var j = 0; (j < 4) && (i + j * 0.75 < sigBytes); j++) { base64Chars.push(map.charAt((triplet >>> (6 * (3 - j))) & 0x3f)); } } // Add padding var paddingChar = map.charAt(64); if (paddingChar) { while (base64Chars.length % 4) { base64Chars.push(paddingChar); } } return base64Chars.join(''); }, /** * Converts a Base64 string to a word array. * * @param {string} base64Str The Base64 string. * * @return {WordArray} The word array. * * @static * * @example * * var wordArray = CryptoJS.enc.Base64.parse(base64String); */ parse: function (base64Str) { // Shortcuts var base64StrLength = base64Str.length; var map = this._map; var reverseMap = this._reverseMap; if (!reverseMap) { reverseMap = this._reverseMap = []; for (var j = 0; j < map.length; j++) { reverseMap[map.charCodeAt(j)] = j; } } // Ignore padding var paddingChar = map.charAt(64); if (paddingChar) { var paddingIndex = base64Str.indexOf(paddingChar); if (paddingIndex !== -1) { base64StrLength = paddingIndex; } } // Convert return parseLoop(base64Str, base64StrLength, reverseMap); }, _map: 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=' }; function parseLoop(base64Str, base64StrLength, reverseMap) { var words = []; var nBytes = 0; for (var i = 0; i < base64StrLength; i++) { if (i % 4) { var bits1 = reverseMap[base64Str.charCodeAt(i - 1)] << ((i % 4) * 2); var bits2 = reverseMap[base64Str.charCodeAt(i)] >>> (6 - (i % 4) * 2); words[nBytes >>> 2] |= (bits1 | bits2) << (24 - (nBytes % 4) * 8); nBytes++; } } return WordArray.create(words, nBytes); } }()); return CryptoJS.enc.Base64; })); },{"./core":18}],20:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { return CryptoJS.enc.Hex; })); },{"./core":18}],21:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { return CryptoJS.enc.Latin1; })); },{"./core":18}],22:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { return CryptoJS.enc.Utf8; })); },{"./core":18}],23:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core"), require("./sha1"), require("./hmac")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core", "./sha1", "./hmac"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var WordArray = C_lib.WordArray; var C_algo = C.algo; var MD5 = C_algo.MD5; /** * This key derivation function is meant to conform with EVP_BytesToKey. * www.openssl.org/docs/crypto/EVP_BytesToKey.html */ var EvpKDF = C_algo.EvpKDF = Base.extend({ /** * Configuration options. * * @property {number} keySize The key size in words to generate. Default: 4 (128 bits) * @property {Hasher} hasher The hash algorithm to use. Default: MD5 * @property {number} iterations The number of iterations to perform. Default: 1 */ cfg: Base.extend({ keySize: 128/32, hasher: MD5, iterations: 1 }), /** * Initializes a newly created key derivation function. * * @param {Object} cfg (Optional) The configuration options to use for the derivation. * * @example * * var kdf = CryptoJS.algo.EvpKDF.create(); * var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8 }); * var kdf = CryptoJS.algo.EvpKDF.create({ keySize: 8, iterations: 1000 }); */ init: function (cfg) { this.cfg = this.cfg.extend(cfg); }, /** * Derives a key from a password. * * @param {WordArray|string} password The password. * @param {WordArray|string} salt A salt. * * @return {WordArray} The derived key. * * @example * * var key = kdf.compute(password, salt); */ compute: function (password, salt) { // Shortcut var cfg = this.cfg; // Init hasher var hasher = cfg.hasher.create(); // Initial values var derivedKey = WordArray.create(); // Shortcuts var derivedKeyWords = derivedKey.words; var keySize = cfg.keySize; var iterations = cfg.iterations; // Generate key while (derivedKeyWords.length < keySize) { if (block) { hasher.update(block); } var block = hasher.update(password).finalize(salt); hasher.reset(); // Iterations for (var i = 1; i < iterations; i++) { block = hasher.finalize(block); hasher.reset(); } derivedKey.concat(block); } derivedKey.sigBytes = keySize * 4; return derivedKey; } }); /** * Derives a key from a password. * * @param {WordArray|string} password The password. * @param {WordArray|string} salt A salt. * @param {Object} cfg (Optional) The configuration options to use for this computation. * * @return {WordArray} The derived key. * * @static * * @example * * var key = CryptoJS.EvpKDF(password, salt); * var key = CryptoJS.EvpKDF(password, salt, { keySize: 8 }); * var key = CryptoJS.EvpKDF(password, salt, { keySize: 8, iterations: 1000 }); */ C.EvpKDF = function (password, salt, cfg) { return EvpKDF.create(cfg).compute(password, salt); }; }()); return CryptoJS.EvpKDF; })); },{"./core":18,"./hmac":25,"./sha1":27}],24:[function(require,module,exports){ ;(function (root, factory, undef) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core"), require("./sha256"), require("./hmac")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core", "./sha256", "./hmac"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { return CryptoJS.HmacSHA256; })); },{"./core":18,"./hmac":25,"./sha256":28}],25:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var Base = C_lib.Base; var C_enc = C.enc; var Utf8 = C_enc.Utf8; var C_algo = C.algo; /** * HMAC algorithm. */ var HMAC = C_algo.HMAC = Base.extend({ /** * Initializes a newly created HMAC. * * @param {Hasher} hasher The hash algorithm to use. * @param {WordArray|string} key The secret key. * * @example * * var hmacHasher = CryptoJS.algo.HMAC.create(CryptoJS.algo.SHA256, key); */ init: function (hasher, key) { // Init hasher hasher = this._hasher = new hasher.init(); // Convert string to WordArray, else assume WordArray already if (typeof key == 'string') { key = Utf8.parse(key); } // Shortcuts var hasherBlockSize = hasher.blockSize; var hasherBlockSizeBytes = hasherBlockSize * 4; // Allow arbitrary length keys if (key.sigBytes > hasherBlockSizeBytes) { key = hasher.finalize(key); } // Clamp excess bits key.clamp(); // Clone key for inner and outer pads var oKey = this._oKey = key.clone(); var iKey = this._iKey = key.clone(); // Shortcuts var oKeyWords = oKey.words; var iKeyWords = iKey.words; // XOR keys with pad constants for (var i = 0; i < hasherBlockSize; i++) { oKeyWords[i] ^= 0x5c5c5c5c; iKeyWords[i] ^= 0x36363636; } oKey.sigBytes = iKey.sigBytes = hasherBlockSizeBytes; // Set initial values this.reset(); }, /** * Resets this HMAC to its initial state. * * @example * * hmacHasher.reset(); */ reset: function () { // Shortcut var hasher = this._hasher; // Reset hasher.reset(); hasher.update(this._iKey); }, /** * Updates this HMAC with a message. * * @param {WordArray|string} messageUpdate The message to append. * * @return {HMAC} This HMAC instance. * * @example * * hmacHasher.update('message'); * hmacHasher.update(wordArray); */ update: function (messageUpdate) { this._hasher.update(messageUpdate); // Chainable return this; }, /** * Finalizes the HMAC computation. * Note that the finalize operation is effectively a destructive, read-once operation. * * @param {WordArray|string} messageUpdate (Optional) A final message update. * * @return {WordArray} The HMAC. * * @example * * var hmac = hmacHasher.finalize(); * var hmac = hmacHasher.finalize('message'); * var hmac = hmacHasher.finalize(wordArray); */ finalize: function (messageUpdate) { // Shortcut var hasher = this._hasher; // Compute HMAC var innerHash = hasher.finalize(messageUpdate); hasher.reset(); var hmac = hasher.finalize(this._oKey.clone().concat(innerHash)); return hmac; } }); }()); })); },{"./core":18}],26:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function (Math) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; // Constants table var T = []; // Compute constants (function () { for (var i = 0; i < 64; i++) { T[i] = (Math.abs(Math.sin(i + 1)) * 0x100000000) | 0; } }()); /** * MD5 hash algorithm. */ var MD5 = C_algo.MD5 = Hasher.extend({ _doReset: function () { this._hash = new WordArray.init([ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476 ]); }, _doProcessBlock: function (M, offset) { // Swap endian for (var i = 0; i < 16; i++) { // Shortcuts var offset_i = offset + i; var M_offset_i = M[offset_i]; M[offset_i] = ( (((M_offset_i << 8) | (M_offset_i >>> 24)) & 0x00ff00ff) | (((M_offset_i << 24) | (M_offset_i >>> 8)) & 0xff00ff00) ); } // Shortcuts var H = this._hash.words; var M_offset_0 = M[offset + 0]; var M_offset_1 = M[offset + 1]; var M_offset_2 = M[offset + 2]; var M_offset_3 = M[offset + 3]; var M_offset_4 = M[offset + 4]; var M_offset_5 = M[offset + 5]; var M_offset_6 = M[offset + 6]; var M_offset_7 = M[offset + 7]; var M_offset_8 = M[offset + 8]; var M_offset_9 = M[offset + 9]; var M_offset_10 = M[offset + 10]; var M_offset_11 = M[offset + 11]; var M_offset_12 = M[offset + 12]; var M_offset_13 = M[offset + 13]; var M_offset_14 = M[offset + 14]; var M_offset_15 = M[offset + 15]; // Working varialbes var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; // Computation a = FF(a, b, c, d, M_offset_0, 7, T[0]); d = FF(d, a, b, c, M_offset_1, 12, T[1]); c = FF(c, d, a, b, M_offset_2, 17, T[2]); b = FF(b, c, d, a, M_offset_3, 22, T[3]); a = FF(a, b, c, d, M_offset_4, 7, T[4]); d = FF(d, a, b, c, M_offset_5, 12, T[5]); c = FF(c, d, a, b, M_offset_6, 17, T[6]); b = FF(b, c, d, a, M_offset_7, 22, T[7]); a = FF(a, b, c, d, M_offset_8, 7, T[8]); d = FF(d, a, b, c, M_offset_9, 12, T[9]); c = FF(c, d, a, b, M_offset_10, 17, T[10]); b = FF(b, c, d, a, M_offset_11, 22, T[11]); a = FF(a, b, c, d, M_offset_12, 7, T[12]); d = FF(d, a, b, c, M_offset_13, 12, T[13]); c = FF(c, d, a, b, M_offset_14, 17, T[14]); b = FF(b, c, d, a, M_offset_15, 22, T[15]); a = GG(a, b, c, d, M_offset_1, 5, T[16]); d = GG(d, a, b, c, M_offset_6, 9, T[17]); c = GG(c, d, a, b, M_offset_11, 14, T[18]); b = GG(b, c, d, a, M_offset_0, 20, T[19]); a = GG(a, b, c, d, M_offset_5, 5, T[20]); d = GG(d, a, b, c, M_offset_10, 9, T[21]); c = GG(c, d, a, b, M_offset_15, 14, T[22]); b = GG(b, c, d, a, M_offset_4, 20, T[23]); a = GG(a, b, c, d, M_offset_9, 5, T[24]); d = GG(d, a, b, c, M_offset_14, 9, T[25]); c = GG(c, d, a, b, M_offset_3, 14, T[26]); b = GG(b, c, d, a, M_offset_8, 20, T[27]); a = GG(a, b, c, d, M_offset_13, 5, T[28]); d = GG(d, a, b, c, M_offset_2, 9, T[29]); c = GG(c, d, a, b, M_offset_7, 14, T[30]); b = GG(b, c, d, a, M_offset_12, 20, T[31]); a = HH(a, b, c, d, M_offset_5, 4, T[32]); d = HH(d, a, b, c, M_offset_8, 11, T[33]); c = HH(c, d, a, b, M_offset_11, 16, T[34]); b = HH(b, c, d, a, M_offset_14, 23, T[35]); a = HH(a, b, c, d, M_offset_1, 4, T[36]); d = HH(d, a, b, c, M_offset_4, 11, T[37]); c = HH(c, d, a, b, M_offset_7, 16, T[38]); b = HH(b, c, d, a, M_offset_10, 23, T[39]); a = HH(a, b, c, d, M_offset_13, 4, T[40]); d = HH(d, a, b, c, M_offset_0, 11, T[41]); c = HH(c, d, a, b, M_offset_3, 16, T[42]); b = HH(b, c, d, a, M_offset_6, 23, T[43]); a = HH(a, b, c, d, M_offset_9, 4, T[44]); d = HH(d, a, b, c, M_offset_12, 11, T[45]); c = HH(c, d, a, b, M_offset_15, 16, T[46]); b = HH(b, c, d, a, M_offset_2, 23, T[47]); a = II(a, b, c, d, M_offset_0, 6, T[48]); d = II(d, a, b, c, M_offset_7, 10, T[49]); c = II(c, d, a, b, M_offset_14, 15, T[50]); b = II(b, c, d, a, M_offset_5, 21, T[51]); a = II(a, b, c, d, M_offset_12, 6, T[52]); d = II(d, a, b, c, M_offset_3, 10, T[53]); c = II(c, d, a, b, M_offset_10, 15, T[54]); b = II(b, c, d, a, M_offset_1, 21, T[55]); a = II(a, b, c, d, M_offset_8, 6, T[56]); d = II(d, a, b, c, M_offset_15, 10, T[57]); c = II(c, d, a, b, M_offset_6, 15, T[58]); b = II(b, c, d, a, M_offset_13, 21, T[59]); a = II(a, b, c, d, M_offset_4, 6, T[60]); d = II(d, a, b, c, M_offset_11, 10, T[61]); c = II(c, d, a, b, M_offset_2, 15, T[62]); b = II(b, c, d, a, M_offset_9, 21, T[63]); // Intermediate hash value H[0] = (H[0] + a) | 0; H[1] = (H[1] + b) | 0; H[2] = (H[2] + c) | 0; H[3] = (H[3] + d) | 0; }, _doFinalize: function () { // Shortcuts var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; // Add padding dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); var nBitsTotalH = Math.floor(nBitsTotal / 0x100000000); var nBitsTotalL = nBitsTotal; dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = ( (((nBitsTotalH << 8) | (nBitsTotalH >>> 24)) & 0x00ff00ff) | (((nBitsTotalH << 24) | (nBitsTotalH >>> 8)) & 0xff00ff00) ); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = ( (((nBitsTotalL << 8) | (nBitsTotalL >>> 24)) & 0x00ff00ff) | (((nBitsTotalL << 24) | (nBitsTotalL >>> 8)) & 0xff00ff00) ); data.sigBytes = (dataWords.length + 1) * 4; // Hash final blocks this._process(); // Shortcuts var hash = this._hash; var H = hash.words; // Swap endian for (var i = 0; i < 4; i++) { // Shortcut var H_i = H[i]; H[i] = (((H_i << 8) | (H_i >>> 24)) & 0x00ff00ff) | (((H_i << 24) | (H_i >>> 8)) & 0xff00ff00); } // Return final computed hash return hash; }, clone: function () { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); function FF(a, b, c, d, x, s, t) { var n = a + ((b & c) | (~b & d)) + x + t; return ((n << s) | (n >>> (32 - s))) + b; } function GG(a, b, c, d, x, s, t) { var n = a + ((b & d) | (c & ~d)) + x + t; return ((n << s) | (n >>> (32 - s))) + b; } function HH(a, b, c, d, x, s, t) { var n = a + (b ^ c ^ d) + x + t; return ((n << s) | (n >>> (32 - s))) + b; } function II(a, b, c, d, x, s, t) { var n = a + (c ^ (b | ~d)) + x + t; return ((n << s) | (n >>> (32 - s))) + b; } /** * Shortcut function to the hasher's object interface. * * @param {WordArray|string} message The message to hash. * * @return {WordArray} The hash. * * @static * * @example * * var hash = CryptoJS.MD5('message'); * var hash = CryptoJS.MD5(wordArray); */ C.MD5 = Hasher._createHelper(MD5); /** * Shortcut function to the HMAC's object interface. * * @param {WordArray|string} message The message to hash. * @param {WordArray|string} key The secret key. * * @return {WordArray} The HMAC. * * @static * * @example * * var hmac = CryptoJS.HmacMD5(message, key); */ C.HmacMD5 = Hasher._createHmacHelper(MD5); }(Math)); return CryptoJS.MD5; })); },{"./core":18}],27:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function () { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; // Reusable object var W = []; /** * SHA-1 hash algorithm. */ var SHA1 = C_algo.SHA1 = Hasher.extend({ _doReset: function () { this._hash = new WordArray.init([ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ]); }, _doProcessBlock: function (M, offset) { // Shortcut var H = this._hash.words; // Working variables var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; var e = H[4]; // Computation for (var i = 0; i < 80; i++) { if (i < 16) { W[i] = M[offset + i] | 0; } else { var n = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16]; W[i] = (n << 1) | (n >>> 31); } var t = ((a << 5) | (a >>> 27)) + e + W[i]; if (i < 20) { t += ((b & c) | (~b & d)) + 0x5a827999; } else if (i < 40) { t += (b ^ c ^ d) + 0x6ed9eba1; } else if (i < 60) { t += ((b & c) | (b & d) | (c & d)) - 0x70e44324; } else /* if (i < 80) */ { t += (b ^ c ^ d) - 0x359d3e2a; } e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t; } // Intermediate hash value H[0] = (H[0] + a) | 0; H[1] = (H[1] + b) | 0; H[2] = (H[2] + c) | 0; H[3] = (H[3] + d) | 0; H[4] = (H[4] + e) | 0; }, _doFinalize: function () { // Shortcuts var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; // Add padding dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal; data.sigBytes = dataWords.length * 4; // Hash final blocks this._process(); // Return final computed hash return this._hash; }, clone: function () { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); /** * Shortcut function to the hasher's object interface. * * @param {WordArray|string} message The message to hash. * * @return {WordArray} The hash. * * @static * * @example * * var hash = CryptoJS.SHA1('message'); * var hash = CryptoJS.SHA1(wordArray); */ C.SHA1 = Hasher._createHelper(SHA1); /** * Shortcut function to the HMAC's object interface. * * @param {WordArray|string} message The message to hash. * @param {WordArray|string} key The secret key. * * @return {WordArray} The HMAC. * * @static * * @example * * var hmac = CryptoJS.HmacSHA1(message, key); */ C.HmacSHA1 = Hasher._createHmacHelper(SHA1); }()); return CryptoJS.SHA1; })); },{"./core":18}],28:[function(require,module,exports){ ;(function (root, factory) { if (typeof exports === "object") { // CommonJS module.exports = exports = factory(require("./core")); } else if (typeof define === "function" && define.amd) { // AMD define(["./core"], factory); } else { // Global (browser) factory(root.CryptoJS); } }(this, function (CryptoJS) { (function (Math) { // Shortcuts var C = CryptoJS; var C_lib = C.lib; var WordArray = C_lib.WordArray; var Hasher = C_lib.Hasher; var C_algo = C.algo; // Initialization and round constants tables var H = []; var K = []; // Compute constants (function () { function isPrime(n) { var sqrtN = Math.sqrt(n); for (var factor = 2; factor <= sqrtN; factor++) { if (!(n % factor)) { return false; } } return true; } function getFractionalBits(n) { return ((n - (n | 0)) * 0x100000000) | 0; } var n = 2; var nPrime = 0; while (nPrime < 64) { if (isPrime(n)) { if (nPrime < 8) { H[nPrime] = getFractionalBits(Math.pow(n, 1 / 2)); } K[nPrime] = getFractionalBits(Math.pow(n, 1 / 3)); nPrime++; } n++; } }()); // Reusable object var W = []; /** * SHA-256 hash algorithm. */ var SHA256 = C_algo.SHA256 = Hasher.extend({ _doReset: function () { this._hash = new WordArray.init(H.slice(0)); }, _doProcessBlock: function (M, offset) { // Shortcut var H = this._hash.words; // Working variables var a = H[0]; var b = H[1]; var c = H[2]; var d = H[3]; var e = H[4]; var f = H[5]; var g = H[6]; var h = H[7]; // Computation for (var i = 0; i < 64; i++) { if (i < 16) { W[i] = M[offset + i] | 0; } else { var gamma0x = W[i - 15]; var gamma0 = ((gamma0x << 25) | (gamma0x >>> 7)) ^ ((gamma0x << 14) | (gamma0x >>> 18)) ^ (gamma0x >>> 3); var gamma1x = W[i - 2]; var gamma1 = ((gamma1x << 15) | (gamma1x >>> 17)) ^ ((gamma1x << 13) | (gamma1x >>> 19)) ^ (gamma1x >>> 10); W[i] = gamma0 + W[i - 7] + gamma1 + W[i - 16]; } var ch = (e & f) ^ (~e & g); var maj = (a & b) ^ (a & c) ^ (b & c); var sigma0 = ((a << 30) | (a >>> 2)) ^ ((a << 19) | (a >>> 13)) ^ ((a << 10) | (a >>> 22)); var sigma1 = ((e << 26) | (e >>> 6)) ^ ((e << 21) | (e >>> 11)) ^ ((e << 7) | (e >>> 25)); var t1 = h + sigma1 + ch + K[i] + W[i]; var t2 = sigma0 + maj; h = g; g = f; f = e; e = (d + t1) | 0; d = c; c = b; b = a; a = (t1 + t2) | 0; } // Intermediate hash value H[0] = (H[0] + a) | 0; H[1] = (H[1] + b) | 0; H[2] = (H[2] + c) | 0; H[3] = (H[3] + d) | 0; H[4] = (H[4] + e) | 0; H[5] = (H[5] + f) | 0; H[6] = (H[6] + g) | 0; H[7] = (H[7] + h) | 0; }, _doFinalize: function () { // Shortcuts var data = this._data; var dataWords = data.words; var nBitsTotal = this._nDataBytes * 8; var nBitsLeft = data.sigBytes * 8; // Add padding dataWords[nBitsLeft >>> 5] |= 0x80 << (24 - nBitsLeft % 32); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 14] = Math.floor(nBitsTotal / 0x100000000); dataWords[(((nBitsLeft + 64) >>> 9) << 4) + 15] = nBitsTotal; data.sigBytes = dataWords.length * 4; // Hash final blocks this._process(); // Return final computed hash return this._hash; }, clone: function () { var clone = Hasher.clone.call(this); clone._hash = this._hash.clone(); return clone; } }); /** * Shortcut function to the hasher's object interface. * * @param {WordArray|string} message The message to hash. * * @return {WordArray} The hash. * * @static * * @example * * var hash = CryptoJS.SHA256('message'); * var hash = CryptoJS.SHA256(wordArray); */ C.SHA256 = Hasher._createHelper(SHA256); /** * Shortcut function to the HMAC's object interface. * * @param {WordArray|string} message The message to hash. * @param {WordArray|string} key The secret key. * * @return {WordArray} The HMAC. * * @static * * @example * * var hmac = CryptoJS.HmacSHA256(message, key); */ C.HmacSHA256 = Hasher._createHmacHelper(SHA256); }(Math)); return CryptoJS.SHA256; })); },{"./core":18}],29:[function(require,module,exports){ require=(function(e,t,n,r){function i(r){if(!n[r]){if(!t[r]){if(e)return e(r);throw new Error("Cannot find module '"+r+"'")}var s=n[r]={exports:{}};t[r][0](function(e){var n=t[r][1][e];return i(n?n:e)},s,s.exports)}return n[r].exports}for(var s=0;s= 0; i--) { if (ka[i] != kb[i]) return false; } //equivalent values for every corresponding key, and //~~~possibly expensive deep test for (i = ka.length - 1; i >= 0; i--) { key = ka[i]; if (!_deepEqual(a[key], b[key])) return false; } return true; } // 8. The non-equivalence assertion tests for any deep inequality. // assert.notDeepEqual(actual, expected, message_opt); assert.notDeepEqual = function notDeepEqual(actual, expected, message) { if (_deepEqual(actual, expected)) { fail(actual, expected, message, 'notDeepEqual', assert.notDeepEqual); } }; // 9. The strict equality assertion tests strict equality, as determined by ===. // assert.strictEqual(actual, expected, message_opt); assert.strictEqual = function strictEqual(actual, expected, message) { if (actual !== expected) { fail(actual, expected, message, '===', assert.strictEqual); } }; // 10. The strict non-equality assertion tests for strict inequality, as // determined by !==. assert.notStrictEqual(actual, expected, message_opt); assert.notStrictEqual = function notStrictEqual(actual, expected, message) { if (actual === expected) { fail(actual, expected, message, '!==', assert.notStrictEqual); } }; function expectedException(actual, expected) { if (!actual || !expected) { return false; } if (expected instanceof RegExp) { return expected.test(actual); } else if (actual instanceof expected) { return true; } else if (expected.call({}, actual) === true) { return true; } return false; } function _throws(shouldThrow, block, expected, message) { var actual; if (typeof expected === 'string') { message = expected; expected = null; } try { block(); } catch (e) { actual = e; } message = (expected && expected.name ? ' (' + expected.name + ').' : '.') + (message ? ' ' + message : '.'); if (shouldThrow && !actual) { fail('Missing expected exception' + message); } if (!shouldThrow && expectedException(actual, expected)) { fail('Got unwanted exception' + message); } if ((shouldThrow && actual && expected && !expectedException(actual, expected)) || (!shouldThrow && actual)) { throw actual; } } // 11. Expected to throw an error: // assert.throws(block, Error_opt, message_opt); assert.throws = function(block, /*optional*/error, /*optional*/message) { _throws.apply(this, [true].concat(pSlice.call(arguments))); }; // EXTENSION! This is annoying to write outside this module. assert.doesNotThrow = function(block, /*optional*/error, /*optional*/message) { _throws.apply(this, [false].concat(pSlice.call(arguments))); }; assert.ifError = function(err) { if (err) {throw err;}}; },{"util":2,"buffer":3}],2:[function(require,module,exports){ var events = require('events'); exports.isArray = isArray; exports.isDate = function(obj){return Object.prototype.toString.call(obj) === '[object Date]'}; exports.isRegExp = function(obj){return Object.prototype.toString.call(obj) === '[object RegExp]'}; exports.print = function () {}; exports.puts = function () {}; exports.debug = function() {}; exports.inspect = function(obj, showHidden, depth, colors) { var seen = []; var stylize = function(str, styleType) { // http://en.wikipedia.org/wiki/ANSI_escape_code#graphics var styles = { 'bold' : [1, 22], 'italic' : [3, 23], 'underline' : [4, 24], 'inverse' : [7, 27], 'white' : [37, 39], 'grey' : [90, 39], 'black' : [30, 39], 'blue' : [34, 39], 'cyan' : [36, 39], 'green' : [32, 39], 'magenta' : [35, 39], 'red' : [31, 39], 'yellow' : [33, 39] }; var style = { 'special': 'cyan', 'number': 'blue', 'boolean': 'yellow', 'undefined': 'grey', 'null': 'bold', 'string': 'green', 'date': 'magenta', // "name": intentionally not styling 'regexp': 'red' }[styleType]; if (style) { return '\033[' + styles[style][0] + 'm' + str + '\033[' + styles[style][1] + 'm'; } else { return str; } }; if (! colors) { stylize = function(str, styleType) { return str; }; } function format(value, recurseTimes) { // Provide a hook for user-specified inspect functions. // Check that value is an object with an inspect function on it if (value && typeof value.inspect === 'function' && // Filter out the util module, it's inspect function is special value !== exports && // Also filter out any prototype objects using the circular check. !(value.constructor && value.constructor.prototype === value)) { return value.inspect(recurseTimes); } // Primitive types cannot have properties switch (typeof value) { case 'undefined': return stylize('undefined', 'undefined'); case 'string': var simple = '\'' + JSON.stringify(value).replace(/^"|"$/g, '') .replace(/'/g, "\\'") .replace(/\\"/g, '"') + '\''; return stylize(simple, 'string'); case 'number': return stylize('' + value, 'number'); case 'boolean': return stylize('' + value, 'boolean'); } // For some reason typeof null is "object", so special case here. if (value === null) { return stylize('null', 'null'); } // Look up the keys of the object. var visible_keys = Object_keys(value); var keys = showHidden ? Object_getOwnPropertyNames(value) : visible_keys; // Functions without properties can be shortcutted. if (typeof value === 'function' && keys.length === 0) { if (isRegExp(value)) { return stylize('' + value, 'regexp'); } else { var name = value.name ? ': ' + value.name : ''; return stylize('[Function' + name + ']', 'special'); } } // Dates without properties can be shortcutted if (isDate(value) && keys.length === 0) { return stylize(value.toUTCString(), 'date'); } var base, type, braces; // Determine the object type if (isArray(value)) { type = 'Array'; braces = ['[', ']']; } else { type = 'Object'; braces = ['{', '}']; } // Make functions say that they are functions if (typeof value === 'function') { var n = value.name ? ': ' + value.name : ''; base = (isRegExp(value)) ? ' ' + value : ' [Function' + n + ']'; } else { base = ''; } // Make dates with properties first say the date if (isDate(value)) { base = ' ' + value.toUTCString(); } if (keys.length === 0) { return braces[0] + base + braces[1]; } if (recurseTimes < 0) { if (isRegExp(value)) { return stylize('' + value, 'regexp'); } else { return stylize('[Object]', 'special'); } } seen.push(value); var output = keys.map(function(key) { var name, str; if (value.__lookupGetter__) { if (value.__lookupGetter__(key)) { if (value.__lookupSetter__(key)) { str = stylize('[Getter/Setter]', 'special'); } else { str = stylize('[Getter]', 'special'); } } else { if (value.__lookupSetter__(key)) { str = stylize('[Setter]', 'special'); } } } if (visible_keys.indexOf(key) < 0) { name = '[' + key + ']'; } if (!str) { if (seen.indexOf(value[key]) < 0) { if (recurseTimes === null) { str = format(value[key]); } else { str = format(value[key], recurseTimes - 1); } if (str.indexOf('\n') > -1) { if (isArray(value)) { str = str.split('\n').map(function(line) { return ' ' + line; }).join('\n').substr(2); } else { str = '\n' + str.split('\n').map(function(line) { return ' ' + line; }).join('\n'); } } } else { str = stylize('[Circular]', 'special'); } } if (typeof name === 'undefined') { if (type === 'Array' && key.match(/^\d+$/)) { return str; } name = JSON.stringify('' + key); if (name.match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)) { name = name.substr(1, name.length - 2); name = stylize(name, 'name'); } else { name = name.replace(/'/g, "\\'") .replace(/\\"/g, '"') .replace(/(^"|"$)/g, "'"); name = stylize(name, 'string'); } } return name + ': ' + str; }); seen.pop(); var numLinesEst = 0; var length = output.reduce(function(prev, cur) { numLinesEst++; if (cur.indexOf('\n') >= 0) numLinesEst++; return prev + cur.length + 1; }, 0); if (length > 50) { output = braces[0] + (base === '' ? '' : base + '\n ') + ' ' + output.join(',\n ') + ' ' + braces[1]; } else { output = braces[0] + base + ' ' + output.join(', ') + ' ' + braces[1]; } return output; } return format(obj, (typeof depth === 'undefined' ? 2 : depth)); }; function isArray(ar) { return ar instanceof Array || Array.isArray(ar) || (ar && ar !== Object.prototype && isArray(ar.__proto__)); } function isRegExp(re) { return re instanceof RegExp || (typeof re === 'object' && Object.prototype.toString.call(re) === '[object RegExp]'); } function isDate(d) { if (d instanceof Date) return true; if (typeof d !== 'object') return false; var properties = Date.prototype && Object_getOwnPropertyNames(Date.prototype); var proto = d.__proto__ && Object_getOwnPropertyNames(d.__proto__); return JSON.stringify(proto) === JSON.stringify(properties); } function pad(n) { return n < 10 ? '0' + n.toString(10) : n.toString(10); } var months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']; // 26 Feb 16:19:34 function timestamp() { var d = new Date(); var time = [pad(d.getHours()), pad(d.getMinutes()), pad(d.getSeconds())].join(':'); return [d.getDate(), months[d.getMonth()], time].join(' '); } exports.log = function (msg) {}; exports.pump = null; var Object_keys = Object.keys || function (obj) { var res = []; for (var key in obj) res.push(key); return res; }; var Object_getOwnPropertyNames = Object.getOwnPropertyNames || function (obj) { var res = []; for (var key in obj) { if (Object.hasOwnProperty.call(obj, key)) res.push(key); } return res; }; var Object_create = Object.create || function (prototype, properties) { // from es5-shim var object; if (prototype === null) { object = { '__proto__' : null }; } else { if (typeof prototype !== 'object') { throw new TypeError( 'typeof prototype[' + (typeof prototype) + '] != \'object\'' ); } var Type = function () {}; Type.prototype = prototype; object = new Type(); object.__proto__ = prototype; } if (typeof properties !== 'undefined' && Object.defineProperties) { Object.defineProperties(object, properties); } return object; }; exports.inherits = function(ctor, superCtor) { ctor.super_ = superCtor; ctor.prototype = Object_create(superCtor.prototype, { constructor: { value: ctor, enumerable: false, writable: true, configurable: true } }); }; var formatRegExp = /%[sdj%]/g; exports.format = function(f) { if (typeof f !== 'string') { var objects = []; for (var i = 0; i < arguments.length; i++) { objects.push(exports.inspect(arguments[i])); } return objects.join(' '); } var i = 1; var args = arguments; var len = args.length; var str = String(f).replace(formatRegExp, function(x) { if (x === '%%') return '%'; if (i >= len) return x; switch (x) { case '%s': return String(args[i++]); case '%d': return Number(args[i++]); case '%j': return JSON.stringify(args[i++]); default: return x; } }); for(var x = args[i]; i < len; x = args[++i]){ if (x === null || typeof x !== 'object') { str += ' ' + x; } else { str += ' ' + exports.inspect(x); } } return str; }; },{"events":4}],5:[function(require,module,exports){ exports.readIEEE754 = function(buffer, offset, isBE, mLen, nBytes) { var e, m, eLen = nBytes * 8 - mLen - 1, eMax = (1 << eLen) - 1, eBias = eMax >> 1, nBits = -7, i = isBE ? 0 : (nBytes - 1), d = isBE ? 1 : -1, s = buffer[offset + i]; i += d; e = s & ((1 << (-nBits)) - 1); s >>= (-nBits); nBits += eLen; for (; nBits > 0; e = e * 256 + buffer[offset + i], i += d, nBits -= 8); m = e & ((1 << (-nBits)) - 1); e >>= (-nBits); nBits += mLen; for (; nBits > 0; m = m * 256 + buffer[offset + i], i += d, nBits -= 8); if (e === 0) { e = 1 - eBias; } else if (e === eMax) { return m ? NaN : ((s ? -1 : 1) * Infinity); } else { m = m + Math.pow(2, mLen); e = e - eBias; } return (s ? -1 : 1) * m * Math.pow(2, e - mLen); }; exports.writeIEEE754 = function(buffer, value, offset, isBE, mLen, nBytes) { var e, m, c, eLen = nBytes * 8 - mLen - 1, eMax = (1 << eLen) - 1, eBias = eMax >> 1, rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0), i = isBE ? (nBytes - 1) : 0, d = isBE ? -1 : 1, s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0; value = Math.abs(value); if (isNaN(value) || value === Infinity) { m = isNaN(value) ? 1 : 0; e = eMax; } else { e = Math.floor(Math.log(value) / Math.LN2); if (value * (c = Math.pow(2, -e)) < 1) { e--; c *= 2; } if (e + eBias >= 1) { value += rt / c; } else { value += rt * Math.pow(2, 1 - eBias); } if (value * c >= 2) { e++; c /= 2; } if (e + eBias >= eMax) { m = 0; e = eMax; } else if (e + eBias >= 1) { m = (value * c - 1) * Math.pow(2, mLen); e = e + eBias; } else { m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen); e = 0; } } for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8); e = (e << mLen) | m; eLen += mLen; for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8); buffer[offset + i - d] |= s * 128; }; },{}],6:[function(require,module,exports){ // shim for using process in browser var process = module.exports = {}; process.nextTick = (function () { var canSetImmediate = typeof window !== 'undefined' && window.setImmediate; var canPost = typeof window !== 'undefined' && window.postMessage && window.addEventListener ; if (canSetImmediate) { return function (f) { return window.setImmediate(f) }; } if (canPost) { var queue = []; window.addEventListener('message', function (ev) { if (ev.source === window && ev.data === 'process-tick') { ev.stopPropagation(); if (queue.length > 0) { var fn = queue.shift(); fn(); } } }, true); return function nextTick(fn) { queue.push(fn); window.postMessage('process-tick', '*'); }; } return function nextTick(fn) { setTimeout(fn, 0); }; })(); process.title = 'browser'; process.browser = true; process.env = {}; process.argv = []; process.binding = function (name) { throw new Error('process.binding is not supported'); } // TODO(shtylman) process.cwd = function () { return '/' }; process.chdir = function (dir) { throw new Error('process.chdir is not supported'); }; },{}],4:[function(require,module,exports){ (function(process){if (!process.EventEmitter) process.EventEmitter = function () {}; var EventEmitter = exports.EventEmitter = process.EventEmitter; var isArray = typeof Array.isArray === 'function' ? Array.isArray : function (xs) { return Object.prototype.toString.call(xs) === '[object Array]' } ; function indexOf (xs, x) { if (xs.indexOf) return xs.indexOf(x); for (var i = 0; i < xs.length; i++) { if (x === xs[i]) return i; } return -1; } // By default EventEmitters will print a warning if more than // 10 listeners are added to it. This is a useful default which // helps finding memory leaks. // // Obviously not all Emitters should be limited to 10. This function allows // that to be increased. Set to zero for unlimited. var defaultMaxListeners = 10; EventEmitter.prototype.setMaxListeners = function(n) { if (!this._events) this._events = {}; this._events.maxListeners = n; }; EventEmitter.prototype.emit = function(type) { // If there is no 'error' event listener then throw. if (type === 'error') { if (!this._events || !this._events.error || (isArray(this._events.error) && !this._events.error.length)) { if (arguments[1] instanceof Error) { throw arguments[1]; // Unhandled 'error' event } else { throw new Error("Uncaught, unspecified 'error' event."); } return false; } } if (!this._events) return false; var handler = this._events[type]; if (!handler) return false; if (typeof handler == 'function') { switch (arguments.length) { // fast cases case 1: handler.call(this); break; case 2: handler.call(this, arguments[1]); break; case 3: handler.call(this, arguments[1], arguments[2]); break; // slower default: var args = Array.prototype.slice.call(arguments, 1); handler.apply(this, args); } return true; } else if (isArray(handler)) { var args = Array.prototype.slice.call(arguments, 1); var listeners = handler.slice(); for (var i = 0, l = listeners.length; i < l; i++) { listeners[i].apply(this, args); } return true; } else { return false; } }; // EventEmitter is defined in src/node_events.cc // EventEmitter.prototype.emit() is also defined there. EventEmitter.prototype.addListener = function(type, listener) { if ('function' !== typeof listener) { throw new Error('addListener only takes instances of Function'); } if (!this._events) this._events = {}; // To avoid recursion in the case that type == "newListeners"! Before // adding it to the listeners, first emit "newListeners". this.emit('newListener', type, listener); if (!this._events[type]) { // Optimize the case of one listener. Don't need the extra array object. this._events[type] = listener; } else if (isArray(this._events[type])) { // Check for listener leak if (!this._events[type].warned) { var m; if (this._events.maxListeners !== undefined) { m = this._events.maxListeners; } else { m = defaultMaxListeners; } if (m && m > 0 && this._events[type].length > m) { this._events[type].warned = true; console.error('(node) warning: possible EventEmitter memory ' + 'leak detected. %d listeners added. ' + 'Use emitter.setMaxListeners() to increase limit.', this._events[type].length); console.trace(); } } // If we've already got an array, just append. this._events[type].push(listener); } else { // Adding the second element, need to change to array. this._events[type] = [this._events[type], listener]; } return this; }; EventEmitter.prototype.on = EventEmitter.prototype.addListener; EventEmitter.prototype.once = function(type, listener) { var self = this; self.on(type, function g() { self.removeListener(type, g); listener.apply(this, arguments); }); return this; }; EventEmitter.prototype.removeListener = function(type, listener) { if ('function' !== typeof listener) { throw new Error('removeListener only takes instances of Function'); } // does not use listeners(), so no side effect of creating _events[type] if (!this._events || !this._events[type]) return this; var list = this._events[type]; if (isArray(list)) { var i = indexOf(list, listener); if (i < 0) return this; list.splice(i, 1); if (list.length == 0) delete this._events[type]; } else if (this._events[type] === listener) { delete this._events[type]; } return this; }; EventEmitter.prototype.removeAllListeners = function(type) { if (arguments.length === 0) { this._events = {}; return this; } // does not use listeners(), so no side effect of creating _events[type] if (type && this._events && this._events[type]) this._events[type] = null; return this; }; EventEmitter.prototype.listeners = function(type) { if (!this._events) this._events = {}; if (!this._events[type]) this._events[type] = []; if (!isArray(this._events[type])) { this._events[type] = [this._events[type]]; } return this._events[type]; }; })(require("__browserify_process")) },{"__browserify_process":6}],"buffer-browserify":[function(require,module,exports){ module.exports=require('q9TxCC'); },{}],"q9TxCC":[function(require,module,exports){ function SlowBuffer (size) { this.length = size; }; var assert = require('assert'); exports.INSPECT_MAX_BYTES = 50; function toHex(n) { if (n < 16) return '0' + n.toString(16); return n.toString(16); } function utf8ToBytes(str) { var byteArray = []; for (var i = 0; i < str.length; i++) if (str.charCodeAt(i) <= 0x7F) byteArray.push(str.charCodeAt(i)); else { var h = encodeURIComponent(str.charAt(i)).substr(1).split('%'); for (var j = 0; j < h.length; j++) byteArray.push(parseInt(h[j], 16)); } return byteArray; } function asciiToBytes(str) { var byteArray = [] for (var i = 0; i < str.length; i++ ) // Node's code seems to be doing this and not & 0x7F.. byteArray.push( str.charCodeAt(i) & 0xFF ); return byteArray; } function base64ToBytes(str) { return require("base64-js").toByteArray(str); } SlowBuffer.byteLength = function (str, encoding) { switch (encoding || "utf8") { case 'hex': return str.length / 2; case 'utf8': case 'utf-8': return utf8ToBytes(str).length; case 'ascii': case 'binary': return str.length; case 'base64': return base64ToBytes(str).length; default: throw new Error('Unknown encoding'); } }; function blitBuffer(src, dst, offset, length) { var pos, i = 0; while (i < length) { if ((i+offset >= dst.length) || (i >= src.length)) break; dst[i + offset] = src[i]; i++; } return i; } SlowBuffer.prototype.utf8Write = function (string, offset, length) { var bytes, pos; return SlowBuffer._charsWritten = blitBuffer(utf8ToBytes(string), this, offset, length); }; SlowBuffer.prototype.asciiWrite = function (string, offset, length) { var bytes, pos; return SlowBuffer._charsWritten = blitBuffer(asciiToBytes(string), this, offset, length); }; SlowBuffer.prototype.binaryWrite = SlowBuffer.prototype.asciiWrite; SlowBuffer.prototype.base64Write = function (string, offset, length) { var bytes, pos; return SlowBuffer._charsWritten = blitBuffer(base64ToBytes(string), this, offset, length); }; SlowBuffer.prototype.base64Slice = function (start, end) { var bytes = Array.prototype.slice.apply(this, arguments) return require("base64-js").fromByteArray(bytes); } function decodeUtf8Char(str) { try { return decodeURIComponent(str); } catch (err) { return String.fromCharCode(0xFFFD); // UTF 8 invalid char } } SlowBuffer.prototype.utf8Slice = function () { var bytes = Array.prototype.slice.apply(this, arguments); var res = ""; var tmp = ""; var i = 0; while (i < bytes.length) { if (bytes[i] <= 0x7F) { res += decodeUtf8Char(tmp) + String.fromCharCode(bytes[i]); tmp = ""; } else tmp += "%" + bytes[i].toString(16); i++; } return res + decodeUtf8Char(tmp); } SlowBuffer.prototype.asciiSlice = function () { var bytes = Array.prototype.slice.apply(this, arguments); var ret = ""; for (var i = 0; i < bytes.length; i++) ret += String.fromCharCode(bytes[i]); return ret; } SlowBuffer.prototype.binarySlice = SlowBuffer.prototype.asciiSlice; SlowBuffer.prototype.inspect = function() { var out = [], len = this.length; for (var i = 0; i < len; i++) { out[i] = toHex(this[i]); if (i == exports.INSPECT_MAX_BYTES) { out[i + 1] = '...'; break; } } return ''; }; SlowBuffer.prototype.hexSlice = function(start, end) { var len = this.length; if (!start || start < 0) start = 0; if (!end || end < 0 || end > len) end = len; var out = ''; for (var i = start; i < end; i++) { out += toHex(this[i]); } return out; }; SlowBuffer.prototype.toString = function(encoding, start, end) { encoding = String(encoding || 'utf8').toLowerCase(); start = +start || 0; if (typeof end == 'undefined') end = this.length; // Fastpath empty strings if (+end == start) { return ''; } switch (encoding) { case 'hex': return this.hexSlice(start, end); case 'utf8': case 'utf-8': return this.utf8Slice(start, end); case 'ascii': return this.asciiSlice(start, end); case 'binary': return this.binarySlice(start, end); case 'base64': return this.base64Slice(start, end); case 'ucs2': case 'ucs-2': return this.ucs2Slice(start, end); default: throw new Error('Unknown encoding'); } }; SlowBuffer.prototype.hexWrite = function(string, offset, length) { offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } // must be an even number of digits var strLen = string.length; if (strLen % 2) { throw new Error('Invalid hex string'); } if (length > strLen / 2) { length = strLen / 2; } for (var i = 0; i < length; i++) { var byte = parseInt(string.substr(i * 2, 2), 16); if (isNaN(byte)) throw new Error('Invalid hex string'); this[offset + i] = byte; } SlowBuffer._charsWritten = i * 2; return i; }; SlowBuffer.prototype.write = function(string, offset, length, encoding) { // Support both (string, offset, length, encoding) // and the legacy (string, encoding, offset, length) if (isFinite(offset)) { if (!isFinite(length)) { encoding = length; length = undefined; } } else { // legacy var swap = encoding; encoding = offset; offset = length; length = swap; } offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } encoding = String(encoding || 'utf8').toLowerCase(); switch (encoding) { case 'hex': return this.hexWrite(string, offset, length); case 'utf8': case 'utf-8': return this.utf8Write(string, offset, length); case 'ascii': return this.asciiWrite(string, offset, length); case 'binary': return this.binaryWrite(string, offset, length); case 'base64': return this.base64Write(string, offset, length); case 'ucs2': case 'ucs-2': return this.ucs2Write(string, offset, length); default: throw new Error('Unknown encoding'); } }; // slice(start, end) SlowBuffer.prototype.slice = function(start, end) { if (end === undefined) end = this.length; if (end > this.length) { throw new Error('oob'); } if (start > end) { throw new Error('oob'); } return new Buffer(this, end - start, +start); }; SlowBuffer.prototype.copy = function(target, targetstart, sourcestart, sourceend) { var temp = []; for (var i=sourcestart; i this.length) { throw new Error('oob'); } if (start > end) { throw new Error('oob'); } for (var i = start; i < end; i++) { this[i] = value; } } function coerce(length) { // Coerce length to a number (possibly NaN), round up // in case it's fractional (e.g. 123.456) then do a // double negate to coerce a NaN to 0. Easy, right? length = ~~Math.ceil(+length); return length < 0 ? 0 : length; } // Buffer function Buffer(subject, encoding, offset) { if (!(this instanceof Buffer)) { return new Buffer(subject, encoding, offset); } var type; // Are we slicing? if (typeof offset === 'number') { this.length = coerce(encoding); this.parent = subject; this.offset = offset; } else { // Find the length switch (type = typeof subject) { case 'number': this.length = coerce(subject); break; case 'string': this.length = Buffer.byteLength(subject, encoding); break; case 'object': // Assume object is an array this.length = coerce(subject.length); break; default: throw new Error('First argument needs to be a number, ' + 'array or string.'); } if (this.length > Buffer.poolSize) { // Big buffer, just alloc one. this.parent = new SlowBuffer(this.length); this.offset = 0; } else { // Small buffer. if (!pool || pool.length - pool.used < this.length) allocPool(); this.parent = pool; this.offset = pool.used; pool.used += this.length; } // Treat array-ish objects as a byte array. if (isArrayIsh(subject)) { for (var i = 0; i < this.length; i++) { if (subject instanceof Buffer) { this.parent[i + this.offset] = subject.readUInt8(i); } else { this.parent[i + this.offset] = subject[i]; } } } else if (type == 'string') { // We are a string this.length = this.write(subject, 0, encoding); } } } function isArrayIsh(subject) { return Array.isArray(subject) || Buffer.isBuffer(subject) || subject && typeof subject === 'object' && typeof subject.length === 'number'; } exports.SlowBuffer = SlowBuffer; exports.Buffer = Buffer; Buffer.poolSize = 8 * 1024; var pool; function allocPool() { pool = new SlowBuffer(Buffer.poolSize); pool.used = 0; } // Static methods Buffer.isBuffer = function isBuffer(b) { return b instanceof Buffer || b instanceof SlowBuffer; }; Buffer.concat = function (list, totalLength) { if (!Array.isArray(list)) { throw new Error("Usage: Buffer.concat(list, [totalLength])\n \ list should be an Array."); } if (list.length === 0) { return new Buffer(0); } else if (list.length === 1) { return list[0]; } if (typeof totalLength !== 'number') { totalLength = 0; for (var i = 0; i < list.length; i++) { var buf = list[i]; totalLength += buf.length; } } var buffer = new Buffer(totalLength); var pos = 0; for (var i = 0; i < list.length; i++) { var buf = list[i]; buf.copy(buffer, pos); pos += buf.length; } return buffer; }; // Inspect Buffer.prototype.inspect = function inspect() { var out = [], len = this.length; for (var i = 0; i < len; i++) { out[i] = toHex(this.parent[i + this.offset]); if (i == exports.INSPECT_MAX_BYTES) { out[i + 1] = '...'; break; } } return ''; }; Buffer.prototype.get = function get(i) { if (i < 0 || i >= this.length) throw new Error('oob'); return this.parent[this.offset + i]; }; Buffer.prototype.set = function set(i, v) { if (i < 0 || i >= this.length) throw new Error('oob'); return this.parent[this.offset + i] = v; }; // write(string, offset = 0, length = buffer.length-offset, encoding = 'utf8') Buffer.prototype.write = function(string, offset, length, encoding) { // Support both (string, offset, length, encoding) // and the legacy (string, encoding, offset, length) if (isFinite(offset)) { if (!isFinite(length)) { encoding = length; length = undefined; } } else { // legacy var swap = encoding; encoding = offset; offset = length; length = swap; } offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } encoding = String(encoding || 'utf8').toLowerCase(); var ret; switch (encoding) { case 'hex': ret = this.parent.hexWrite(string, this.offset + offset, length); break; case 'utf8': case 'utf-8': ret = this.parent.utf8Write(string, this.offset + offset, length); break; case 'ascii': ret = this.parent.asciiWrite(string, this.offset + offset, length); break; case 'binary': ret = this.parent.binaryWrite(string, this.offset + offset, length); break; case 'base64': // Warning: maxLength not taken into account in base64Write ret = this.parent.base64Write(string, this.offset + offset, length); break; case 'ucs2': case 'ucs-2': ret = this.parent.ucs2Write(string, this.offset + offset, length); break; default: throw new Error('Unknown encoding'); } Buffer._charsWritten = SlowBuffer._charsWritten; return ret; }; // toString(encoding, start=0, end=buffer.length) Buffer.prototype.toString = function(encoding, start, end) { encoding = String(encoding || 'utf8').toLowerCase(); if (typeof start == 'undefined' || start < 0) { start = 0; } else if (start > this.length) { start = this.length; } if (typeof end == 'undefined' || end > this.length) { end = this.length; } else if (end < 0) { end = 0; } start = start + this.offset; end = end + this.offset; switch (encoding) { case 'hex': return this.parent.hexSlice(start, end); case 'utf8': case 'utf-8': return this.parent.utf8Slice(start, end); case 'ascii': return this.parent.asciiSlice(start, end); case 'binary': return this.parent.binarySlice(start, end); case 'base64': return this.parent.base64Slice(start, end); case 'ucs2': case 'ucs-2': return this.parent.ucs2Slice(start, end); default: throw new Error('Unknown encoding'); } }; // byteLength Buffer.byteLength = SlowBuffer.byteLength; // fill(value, start=0, end=buffer.length) Buffer.prototype.fill = function fill(value, start, end) { value || (value = 0); start || (start = 0); end || (end = this.length); if (typeof value === 'string') { value = value.charCodeAt(0); } if (!(typeof value === 'number') || isNaN(value)) { throw new Error('value is not a number'); } if (end < start) throw new Error('end < start'); // Fill 0 bytes; we're done if (end === start) return 0; if (this.length == 0) return 0; if (start < 0 || start >= this.length) { throw new Error('start out of bounds'); } if (end < 0 || end > this.length) { throw new Error('end out of bounds'); } return this.parent.fill(value, start + this.offset, end + this.offset); }; // copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length) Buffer.prototype.copy = function(target, target_start, start, end) { var source = this; start || (start = 0); end || (end = this.length); target_start || (target_start = 0); if (end < start) throw new Error('sourceEnd < sourceStart'); // Copy 0 bytes; we're done if (end === start) return 0; if (target.length == 0 || source.length == 0) return 0; if (target_start < 0 || target_start >= target.length) { throw new Error('targetStart out of bounds'); } if (start < 0 || start >= source.length) { throw new Error('sourceStart out of bounds'); } if (end < 0 || end > source.length) { throw new Error('sourceEnd out of bounds'); } // Are we oob? if (end > this.length) { end = this.length; } if (target.length - target_start < end - start) { end = target.length - target_start + start; } return this.parent.copy(target.parent, target_start + target.offset, start + this.offset, end + this.offset); }; // slice(start, end) Buffer.prototype.slice = function(start, end) { if (end === undefined) end = this.length; if (end > this.length) throw new Error('oob'); if (start > end) throw new Error('oob'); return new Buffer(this.parent, end - start, +start + this.offset); }; // Legacy methods for backwards compatibility. Buffer.prototype.utf8Slice = function(start, end) { return this.toString('utf8', start, end); }; Buffer.prototype.binarySlice = function(start, end) { return this.toString('binary', start, end); }; Buffer.prototype.asciiSlice = function(start, end) { return this.toString('ascii', start, end); }; Buffer.prototype.utf8Write = function(string, offset) { return this.write(string, offset, 'utf8'); }; Buffer.prototype.binaryWrite = function(string, offset) { return this.write(string, offset, 'binary'); }; Buffer.prototype.asciiWrite = function(string, offset) { return this.write(string, offset, 'ascii'); }; Buffer.prototype.readUInt8 = function(offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return; return buffer.parent[buffer.offset + offset]; }; function readUInt16(buffer, offset, isBigEndian, noAssert) { var val = 0; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return 0; if (isBigEndian) { val = buffer.parent[buffer.offset + offset] << 8; if (offset + 1 < buffer.length) { val |= buffer.parent[buffer.offset + offset + 1]; } } else { val = buffer.parent[buffer.offset + offset]; if (offset + 1 < buffer.length) { val |= buffer.parent[buffer.offset + offset + 1] << 8; } } return val; } Buffer.prototype.readUInt16LE = function(offset, noAssert) { return readUInt16(this, offset, false, noAssert); }; Buffer.prototype.readUInt16BE = function(offset, noAssert) { return readUInt16(this, offset, true, noAssert); }; function readUInt32(buffer, offset, isBigEndian, noAssert) { var val = 0; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return 0; if (isBigEndian) { if (offset + 1 < buffer.length) val = buffer.parent[buffer.offset + offset + 1] << 16; if (offset + 2 < buffer.length) val |= buffer.parent[buffer.offset + offset + 2] << 8; if (offset + 3 < buffer.length) val |= buffer.parent[buffer.offset + offset + 3]; val = val + (buffer.parent[buffer.offset + offset] << 24 >>> 0); } else { if (offset + 2 < buffer.length) val = buffer.parent[buffer.offset + offset + 2] << 16; if (offset + 1 < buffer.length) val |= buffer.parent[buffer.offset + offset + 1] << 8; val |= buffer.parent[buffer.offset + offset]; if (offset + 3 < buffer.length) val = val + (buffer.parent[buffer.offset + offset + 3] << 24 >>> 0); } return val; } Buffer.prototype.readUInt32LE = function(offset, noAssert) { return readUInt32(this, offset, false, noAssert); }; Buffer.prototype.readUInt32BE = function(offset, noAssert) { return readUInt32(this, offset, true, noAssert); }; /* * Signed integer types, yay team! A reminder on how two's complement actually * works. The first bit is the signed bit, i.e. tells us whether or not the * number should be positive or negative. If the two's complement value is * positive, then we're done, as it's equivalent to the unsigned representation. * * Now if the number is positive, you're pretty much done, you can just leverage * the unsigned translations and return those. Unfortunately, negative numbers * aren't quite that straightforward. * * At first glance, one might be inclined to use the traditional formula to * translate binary numbers between the positive and negative values in two's * complement. (Though it doesn't quite work for the most negative value) * Mainly: * - invert all the bits * - add one to the result * * Of course, this doesn't quite work in Javascript. Take for example the value * of -128. This could be represented in 16 bits (big-endian) as 0xff80. But of * course, Javascript will do the following: * * > ~0xff80 * -65409 * * Whoh there, Javascript, that's not quite right. But wait, according to * Javascript that's perfectly correct. When Javascript ends up seeing the * constant 0xff80, it has no notion that it is actually a signed number. It * assumes that we've input the unsigned value 0xff80. Thus, when it does the * binary negation, it casts it into a signed value, (positive 0xff80). Then * when you perform binary negation on that, it turns it into a negative number. * * Instead, we're going to have to use the following general formula, that works * in a rather Javascript friendly way. I'm glad we don't support this kind of * weird numbering scheme in the kernel. * * (BIT-MAX - (unsigned)val + 1) * -1 * * The astute observer, may think that this doesn't make sense for 8-bit numbers * (really it isn't necessary for them). However, when you get 16-bit numbers, * you do. Let's go back to our prior example and see how this will look: * * (0xffff - 0xff80 + 1) * -1 * (0x007f + 1) * -1 * (0x0080) * -1 */ Buffer.prototype.readInt8 = function(offset, noAssert) { var buffer = this; var neg; if (!noAssert) { assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to read beyond buffer length'); } if (offset >= buffer.length) return; neg = buffer.parent[buffer.offset + offset] & 0x80; if (!neg) { return (buffer.parent[buffer.offset + offset]); } return ((0xff - buffer.parent[buffer.offset + offset] + 1) * -1); }; function readInt16(buffer, offset, isBigEndian, noAssert) { var neg, val; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to read beyond buffer length'); } val = readUInt16(buffer, offset, isBigEndian, noAssert); neg = val & 0x8000; if (!neg) { return val; } return (0xffff - val + 1) * -1; } Buffer.prototype.readInt16LE = function(offset, noAssert) { return readInt16(this, offset, false, noAssert); }; Buffer.prototype.readInt16BE = function(offset, noAssert) { return readInt16(this, offset, true, noAssert); }; function readInt32(buffer, offset, isBigEndian, noAssert) { var neg, val; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } val = readUInt32(buffer, offset, isBigEndian, noAssert); neg = val & 0x80000000; if (!neg) { return (val); } return (0xffffffff - val + 1) * -1; } Buffer.prototype.readInt32LE = function(offset, noAssert) { return readInt32(this, offset, false, noAssert); }; Buffer.prototype.readInt32BE = function(offset, noAssert) { return readInt32(this, offset, true, noAssert); }; function readFloat(buffer, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } return require('./buffer_ieee754').readIEEE754(buffer, offset, isBigEndian, 23, 4); } Buffer.prototype.readFloatLE = function(offset, noAssert) { return readFloat(this, offset, false, noAssert); }; Buffer.prototype.readFloatBE = function(offset, noAssert) { return readFloat(this, offset, true, noAssert); }; function readDouble(buffer, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset + 7 < buffer.length, 'Trying to read beyond buffer length'); } return require('./buffer_ieee754').readIEEE754(buffer, offset, isBigEndian, 52, 8); } Buffer.prototype.readDoubleLE = function(offset, noAssert) { return readDouble(this, offset, false, noAssert); }; Buffer.prototype.readDoubleBE = function(offset, noAssert) { return readDouble(this, offset, true, noAssert); }; /* * We have to make sure that the value is a valid integer. This means that it is * non-negative. It has no fractional component and that it does not exceed the * maximum allowed value. * * value The number to check for validity * * max The maximum value */ function verifuint(value, max) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value >= 0, 'specified a negative value for writing an unsigned value'); assert.ok(value <= max, 'value is larger than maximum value for type'); assert.ok(Math.floor(value) === value, 'value has a fractional component'); } Buffer.prototype.writeUInt8 = function(value, offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xff); } if (offset < buffer.length) { buffer.parent[buffer.offset + offset] = value; } }; function writeUInt16(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xffff); } for (var i = 0; i < Math.min(buffer.length - offset, 2); i++) { buffer.parent[buffer.offset + offset + i] = (value & (0xff << (8 * (isBigEndian ? 1 - i : i)))) >>> (isBigEndian ? 1 - i : i) * 8; } } Buffer.prototype.writeUInt16LE = function(value, offset, noAssert) { writeUInt16(this, value, offset, false, noAssert); }; Buffer.prototype.writeUInt16BE = function(value, offset, noAssert) { writeUInt16(this, value, offset, true, noAssert); }; function writeUInt32(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xffffffff); } for (var i = 0; i < Math.min(buffer.length - offset, 4); i++) { buffer.parent[buffer.offset + offset + i] = (value >>> (isBigEndian ? 3 - i : i) * 8) & 0xff; } } Buffer.prototype.writeUInt32LE = function(value, offset, noAssert) { writeUInt32(this, value, offset, false, noAssert); }; Buffer.prototype.writeUInt32BE = function(value, offset, noAssert) { writeUInt32(this, value, offset, true, noAssert); }; /* * We now move onto our friends in the signed number category. Unlike unsigned * numbers, we're going to have to worry a bit more about how we put values into * arrays. Since we are only worrying about signed 32-bit values, we're in * slightly better shape. Unfortunately, we really can't do our favorite binary * & in this system. It really seems to do the wrong thing. For example: * * > -32 & 0xff * 224 * * What's happening above is really: 0xe0 & 0xff = 0xe0. However, the results of * this aren't treated as a signed number. Ultimately a bad thing. * * What we're going to want to do is basically create the unsigned equivalent of * our representation and pass that off to the wuint* functions. To do that * we're going to do the following: * * - if the value is positive * we can pass it directly off to the equivalent wuint * - if the value is negative * we do the following computation: * mb + val + 1, where * mb is the maximum unsigned value in that byte size * val is the Javascript negative integer * * * As a concrete value, take -128. In signed 16 bits this would be 0xff80. If * you do out the computations: * * 0xffff - 128 + 1 * 0xffff - 127 * 0xff80 * * You can then encode this value as the signed version. This is really rather * hacky, but it should work and get the job done which is our goal here. */ /* * A series of checks to make sure we actually have a signed 32-bit number */ function verifsint(value, max, min) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value <= max, 'value larger than maximum allowed value'); assert.ok(value >= min, 'value smaller than minimum allowed value'); assert.ok(Math.floor(value) === value, 'value has a fractional component'); } function verifIEEE754(value, max, min) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value <= max, 'value larger than maximum allowed value'); assert.ok(value >= min, 'value smaller than minimum allowed value'); } Buffer.prototype.writeInt8 = function(value, offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7f, -0x80); } if (value >= 0) { buffer.writeUInt8(value, offset, noAssert); } else { buffer.writeUInt8(0xff + value + 1, offset, noAssert); } }; function writeInt16(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7fff, -0x8000); } if (value >= 0) { writeUInt16(buffer, value, offset, isBigEndian, noAssert); } else { writeUInt16(buffer, 0xffff + value + 1, offset, isBigEndian, noAssert); } } Buffer.prototype.writeInt16LE = function(value, offset, noAssert) { writeInt16(this, value, offset, false, noAssert); }; Buffer.prototype.writeInt16BE = function(value, offset, noAssert) { writeInt16(this, value, offset, true, noAssert); }; function writeInt32(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7fffffff, -0x80000000); } if (value >= 0) { writeUInt32(buffer, value, offset, isBigEndian, noAssert); } else { writeUInt32(buffer, 0xffffffff + value + 1, offset, isBigEndian, noAssert); } } Buffer.prototype.writeInt32LE = function(value, offset, noAssert) { writeInt32(this, value, offset, false, noAssert); }; Buffer.prototype.writeInt32BE = function(value, offset, noAssert) { writeInt32(this, value, offset, true, noAssert); }; function writeFloat(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to write beyond buffer length'); verifIEEE754(value, 3.4028234663852886e+38, -3.4028234663852886e+38); } require('./buffer_ieee754').writeIEEE754(buffer, value, offset, isBigEndian, 23, 4); } Buffer.prototype.writeFloatLE = function(value, offset, noAssert) { writeFloat(this, value, offset, false, noAssert); }; Buffer.prototype.writeFloatBE = function(value, offset, noAssert) { writeFloat(this, value, offset, true, noAssert); }; function writeDouble(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 7 < buffer.length, 'Trying to write beyond buffer length'); verifIEEE754(value, 1.7976931348623157E+308, -1.7976931348623157E+308); } require('./buffer_ieee754').writeIEEE754(buffer, value, offset, isBigEndian, 52, 8); } Buffer.prototype.writeDoubleLE = function(value, offset, noAssert) { writeDouble(this, value, offset, false, noAssert); }; Buffer.prototype.writeDoubleBE = function(value, offset, noAssert) { writeDouble(this, value, offset, true, noAssert); }; SlowBuffer.prototype.readUInt8 = Buffer.prototype.readUInt8; SlowBuffer.prototype.readUInt16LE = Buffer.prototype.readUInt16LE; SlowBuffer.prototype.readUInt16BE = Buffer.prototype.readUInt16BE; SlowBuffer.prototype.readUInt32LE = Buffer.prototype.readUInt32LE; SlowBuffer.prototype.readUInt32BE = Buffer.prototype.readUInt32BE; SlowBuffer.prototype.readInt8 = Buffer.prototype.readInt8; SlowBuffer.prototype.readInt16LE = Buffer.prototype.readInt16LE; SlowBuffer.prototype.readInt16BE = Buffer.prototype.readInt16BE; SlowBuffer.prototype.readInt32LE = Buffer.prototype.readInt32LE; SlowBuffer.prototype.readInt32BE = Buffer.prototype.readInt32BE; SlowBuffer.prototype.readFloatLE = Buffer.prototype.readFloatLE; SlowBuffer.prototype.readFloatBE = Buffer.prototype.readFloatBE; SlowBuffer.prototype.readDoubleLE = Buffer.prototype.readDoubleLE; SlowBuffer.prototype.readDoubleBE = Buffer.prototype.readDoubleBE; SlowBuffer.prototype.writeUInt8 = Buffer.prototype.writeUInt8; SlowBuffer.prototype.writeUInt16LE = Buffer.prototype.writeUInt16LE; SlowBuffer.prototype.writeUInt16BE = Buffer.prototype.writeUInt16BE; SlowBuffer.prototype.writeUInt32LE = Buffer.prototype.writeUInt32LE; SlowBuffer.prototype.writeUInt32BE = Buffer.prototype.writeUInt32BE; SlowBuffer.prototype.writeInt8 = Buffer.prototype.writeInt8; SlowBuffer.prototype.writeInt16LE = Buffer.prototype.writeInt16LE; SlowBuffer.prototype.writeInt16BE = Buffer.prototype.writeInt16BE; SlowBuffer.prototype.writeInt32LE = Buffer.prototype.writeInt32LE; SlowBuffer.prototype.writeInt32BE = Buffer.prototype.writeInt32BE; SlowBuffer.prototype.writeFloatLE = Buffer.prototype.writeFloatLE; SlowBuffer.prototype.writeFloatBE = Buffer.prototype.writeFloatBE; SlowBuffer.prototype.writeDoubleLE = Buffer.prototype.writeDoubleLE; SlowBuffer.prototype.writeDoubleBE = Buffer.prototype.writeDoubleBE; },{"assert":1,"./buffer_ieee754":5,"base64-js":7}],7:[function(require,module,exports){ (function (exports) { 'use strict'; var lookup = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; function b64ToByteArray(b64) { var i, j, l, tmp, placeHolders, arr; if (b64.length % 4 > 0) { throw 'Invalid string. Length must be a multiple of 4'; } // the number of equal signs (place holders) // if there are two placeholders, than the two characters before it // represent one byte // if there is only one, then the three characters before it represent 2 bytes // this is just a cheap hack to not do indexOf twice placeHolders = b64.indexOf('='); placeHolders = placeHolders > 0 ? b64.length - placeHolders : 0; // base64 is 4/3 + up to two characters of the original data arr = [];//new Uint8Array(b64.length * 3 / 4 - placeHolders); // if there are placeholders, only get up to the last complete 4 chars l = placeHolders > 0 ? b64.length - 4 : b64.length; for (i = 0, j = 0; i < l; i += 4, j += 3) { tmp = (lookup.indexOf(b64[i]) << 18) | (lookup.indexOf(b64[i + 1]) << 12) | (lookup.indexOf(b64[i + 2]) << 6) | lookup.indexOf(b64[i + 3]); arr.push((tmp & 0xFF0000) >> 16); arr.push((tmp & 0xFF00) >> 8); arr.push(tmp & 0xFF); } if (placeHolders === 2) { tmp = (lookup.indexOf(b64[i]) << 2) | (lookup.indexOf(b64[i + 1]) >> 4); arr.push(tmp & 0xFF); } else if (placeHolders === 1) { tmp = (lookup.indexOf(b64[i]) << 10) | (lookup.indexOf(b64[i + 1]) << 4) | (lookup.indexOf(b64[i + 2]) >> 2); arr.push((tmp >> 8) & 0xFF); arr.push(tmp & 0xFF); } return arr; } function uint8ToBase64(uint8) { var i, extraBytes = uint8.length % 3, // if we have 1 byte left, pad 2 bytes output = "", temp, length; function tripletToBase64 (num) { return lookup[num >> 18 & 0x3F] + lookup[num >> 12 & 0x3F] + lookup[num >> 6 & 0x3F] + lookup[num & 0x3F]; }; // go through the array every three bytes, we'll deal with trailing stuff later for (i = 0, length = uint8.length - extraBytes; i < length; i += 3) { temp = (uint8[i] << 16) + (uint8[i + 1] << 8) + (uint8[i + 2]); output += tripletToBase64(temp); } // pad the end with zeros, but make sure to not forget the extra bytes switch (extraBytes) { case 1: temp = uint8[uint8.length - 1]; output += lookup[temp >> 2]; output += lookup[(temp << 4) & 0x3F]; output += '=='; break; case 2: temp = (uint8[uint8.length - 2] << 8) + (uint8[uint8.length - 1]); output += lookup[temp >> 10]; output += lookup[(temp >> 4) & 0x3F]; output += lookup[(temp << 2) & 0x3F]; output += '='; break; } return output; } module.exports.toByteArray = b64ToByteArray; module.exports.fromByteArray = uint8ToBase64; }()); },{}],8:[function(require,module,exports){ exports.readIEEE754 = function(buffer, offset, isBE, mLen, nBytes) { var e, m, eLen = nBytes * 8 - mLen - 1, eMax = (1 << eLen) - 1, eBias = eMax >> 1, nBits = -7, i = isBE ? 0 : (nBytes - 1), d = isBE ? 1 : -1, s = buffer[offset + i]; i += d; e = s & ((1 << (-nBits)) - 1); s >>= (-nBits); nBits += eLen; for (; nBits > 0; e = e * 256 + buffer[offset + i], i += d, nBits -= 8); m = e & ((1 << (-nBits)) - 1); e >>= (-nBits); nBits += mLen; for (; nBits > 0; m = m * 256 + buffer[offset + i], i += d, nBits -= 8); if (e === 0) { e = 1 - eBias; } else if (e === eMax) { return m ? NaN : ((s ? -1 : 1) * Infinity); } else { m = m + Math.pow(2, mLen); e = e - eBias; } return (s ? -1 : 1) * m * Math.pow(2, e - mLen); }; exports.writeIEEE754 = function(buffer, value, offset, isBE, mLen, nBytes) { var e, m, c, eLen = nBytes * 8 - mLen - 1, eMax = (1 << eLen) - 1, eBias = eMax >> 1, rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0), i = isBE ? (nBytes - 1) : 0, d = isBE ? -1 : 1, s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0; value = Math.abs(value); if (isNaN(value) || value === Infinity) { m = isNaN(value) ? 1 : 0; e = eMax; } else { e = Math.floor(Math.log(value) / Math.LN2); if (value * (c = Math.pow(2, -e)) < 1) { e--; c *= 2; } if (e + eBias >= 1) { value += rt / c; } else { value += rt * Math.pow(2, 1 - eBias); } if (value * c >= 2) { e++; c /= 2; } if (e + eBias >= eMax) { m = 0; e = eMax; } else if (e + eBias >= 1) { m = (value * c - 1) * Math.pow(2, mLen); e = e + eBias; } else { m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen); e = 0; } } for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8); e = (e << mLen) | m; eLen += mLen; for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8); buffer[offset + i - d] |= s * 128; }; },{}],3:[function(require,module,exports){ function SlowBuffer (size) { this.length = size; }; var assert = require('assert'); exports.INSPECT_MAX_BYTES = 50; function toHex(n) { if (n < 16) return '0' + n.toString(16); return n.toString(16); } function utf8ToBytes(str) { var byteArray = []; for (var i = 0; i < str.length; i++) if (str.charCodeAt(i) <= 0x7F) byteArray.push(str.charCodeAt(i)); else { var h = encodeURIComponent(str.charAt(i)).substr(1).split('%'); for (var j = 0; j < h.length; j++) byteArray.push(parseInt(h[j], 16)); } return byteArray; } function asciiToBytes(str) { var byteArray = [] for (var i = 0; i < str.length; i++ ) // Node's code seems to be doing this and not & 0x7F.. byteArray.push( str.charCodeAt(i) & 0xFF ); return byteArray; } function base64ToBytes(str) { return require("base64-js").toByteArray(str); } SlowBuffer.byteLength = function (str, encoding) { switch (encoding || "utf8") { case 'hex': return str.length / 2; case 'utf8': case 'utf-8': return utf8ToBytes(str).length; case 'ascii': return str.length; case 'base64': return base64ToBytes(str).length; default: throw new Error('Unknown encoding'); } }; function blitBuffer(src, dst, offset, length) { var pos, i = 0; while (i < length) { if ((i+offset >= dst.length) || (i >= src.length)) break; dst[i + offset] = src[i]; i++; } return i; } SlowBuffer.prototype.utf8Write = function (string, offset, length) { var bytes, pos; return SlowBuffer._charsWritten = blitBuffer(utf8ToBytes(string), this, offset, length); }; SlowBuffer.prototype.asciiWrite = function (string, offset, length) { var bytes, pos; return SlowBuffer._charsWritten = blitBuffer(asciiToBytes(string), this, offset, length); }; SlowBuffer.prototype.base64Write = function (string, offset, length) { var bytes, pos; return SlowBuffer._charsWritten = blitBuffer(base64ToBytes(string), this, offset, length); }; SlowBuffer.prototype.base64Slice = function (start, end) { var bytes = Array.prototype.slice.apply(this, arguments) return require("base64-js").fromByteArray(bytes); } function decodeUtf8Char(str) { try { return decodeURIComponent(str); } catch (err) { return String.fromCharCode(0xFFFD); // UTF 8 invalid char } } SlowBuffer.prototype.utf8Slice = function () { var bytes = Array.prototype.slice.apply(this, arguments); var res = ""; var tmp = ""; var i = 0; while (i < bytes.length) { if (bytes[i] <= 0x7F) { res += decodeUtf8Char(tmp) + String.fromCharCode(bytes[i]); tmp = ""; } else tmp += "%" + bytes[i].toString(16); i++; } return res + decodeUtf8Char(tmp); } SlowBuffer.prototype.asciiSlice = function () { var bytes = Array.prototype.slice.apply(this, arguments); var ret = ""; for (var i = 0; i < bytes.length; i++) ret += String.fromCharCode(bytes[i]); return ret; } SlowBuffer.prototype.inspect = function() { var out = [], len = this.length; for (var i = 0; i < len; i++) { out[i] = toHex(this[i]); if (i == exports.INSPECT_MAX_BYTES) { out[i + 1] = '...'; break; } } return ''; }; SlowBuffer.prototype.hexSlice = function(start, end) { var len = this.length; if (!start || start < 0) start = 0; if (!end || end < 0 || end > len) end = len; var out = ''; for (var i = start; i < end; i++) { out += toHex(this[i]); } return out; }; SlowBuffer.prototype.toString = function(encoding, start, end) { encoding = String(encoding || 'utf8').toLowerCase(); start = +start || 0; if (typeof end == 'undefined') end = this.length; // Fastpath empty strings if (+end == start) { return ''; } switch (encoding) { case 'hex': return this.hexSlice(start, end); case 'utf8': case 'utf-8': return this.utf8Slice(start, end); case 'ascii': return this.asciiSlice(start, end); case 'binary': return this.binarySlice(start, end); case 'base64': return this.base64Slice(start, end); case 'ucs2': case 'ucs-2': return this.ucs2Slice(start, end); default: throw new Error('Unknown encoding'); } }; SlowBuffer.prototype.hexWrite = function(string, offset, length) { offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } // must be an even number of digits var strLen = string.length; if (strLen % 2) { throw new Error('Invalid hex string'); } if (length > strLen / 2) { length = strLen / 2; } for (var i = 0; i < length; i++) { var byte = parseInt(string.substr(i * 2, 2), 16); if (isNaN(byte)) throw new Error('Invalid hex string'); this[offset + i] = byte; } SlowBuffer._charsWritten = i * 2; return i; }; SlowBuffer.prototype.write = function(string, offset, length, encoding) { // Support both (string, offset, length, encoding) // and the legacy (string, encoding, offset, length) if (isFinite(offset)) { if (!isFinite(length)) { encoding = length; length = undefined; } } else { // legacy var swap = encoding; encoding = offset; offset = length; length = swap; } offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } encoding = String(encoding || 'utf8').toLowerCase(); switch (encoding) { case 'hex': return this.hexWrite(string, offset, length); case 'utf8': case 'utf-8': return this.utf8Write(string, offset, length); case 'ascii': return this.asciiWrite(string, offset, length); case 'binary': return this.binaryWrite(string, offset, length); case 'base64': return this.base64Write(string, offset, length); case 'ucs2': case 'ucs-2': return this.ucs2Write(string, offset, length); default: throw new Error('Unknown encoding'); } }; // slice(start, end) SlowBuffer.prototype.slice = function(start, end) { if (end === undefined) end = this.length; if (end > this.length) { throw new Error('oob'); } if (start > end) { throw new Error('oob'); } return new Buffer(this, end - start, +start); }; SlowBuffer.prototype.copy = function(target, targetstart, sourcestart, sourceend) { var temp = []; for (var i=sourcestart; i Buffer.poolSize) { // Big buffer, just alloc one. this.parent = new SlowBuffer(this.length); this.offset = 0; } else { // Small buffer. if (!pool || pool.length - pool.used < this.length) allocPool(); this.parent = pool; this.offset = pool.used; pool.used += this.length; } // Treat array-ish objects as a byte array. if (isArrayIsh(subject)) { for (var i = 0; i < this.length; i++) { this.parent[i + this.offset] = subject[i]; } } else if (type == 'string') { // We are a string this.length = this.write(subject, 0, encoding); } } } function isArrayIsh(subject) { return Array.isArray(subject) || Buffer.isBuffer(subject) || subject && typeof subject === 'object' && typeof subject.length === 'number'; } exports.SlowBuffer = SlowBuffer; exports.Buffer = Buffer; Buffer.poolSize = 8 * 1024; var pool; function allocPool() { pool = new SlowBuffer(Buffer.poolSize); pool.used = 0; } // Static methods Buffer.isBuffer = function isBuffer(b) { return b instanceof Buffer || b instanceof SlowBuffer; }; Buffer.concat = function (list, totalLength) { if (!Array.isArray(list)) { throw new Error("Usage: Buffer.concat(list, [totalLength])\n \ list should be an Array."); } if (list.length === 0) { return new Buffer(0); } else if (list.length === 1) { return list[0]; } if (typeof totalLength !== 'number') { totalLength = 0; for (var i = 0; i < list.length; i++) { var buf = list[i]; totalLength += buf.length; } } var buffer = new Buffer(totalLength); var pos = 0; for (var i = 0; i < list.length; i++) { var buf = list[i]; buf.copy(buffer, pos); pos += buf.length; } return buffer; }; // Inspect Buffer.prototype.inspect = function inspect() { var out = [], len = this.length; for (var i = 0; i < len; i++) { out[i] = toHex(this.parent[i + this.offset]); if (i == exports.INSPECT_MAX_BYTES) { out[i + 1] = '...'; break; } } return ''; }; Buffer.prototype.get = function get(i) { if (i < 0 || i >= this.length) throw new Error('oob'); return this.parent[this.offset + i]; }; Buffer.prototype.set = function set(i, v) { if (i < 0 || i >= this.length) throw new Error('oob'); return this.parent[this.offset + i] = v; }; // write(string, offset = 0, length = buffer.length-offset, encoding = 'utf8') Buffer.prototype.write = function(string, offset, length, encoding) { // Support both (string, offset, length, encoding) // and the legacy (string, encoding, offset, length) if (isFinite(offset)) { if (!isFinite(length)) { encoding = length; length = undefined; } } else { // legacy var swap = encoding; encoding = offset; offset = length; length = swap; } offset = +offset || 0; var remaining = this.length - offset; if (!length) { length = remaining; } else { length = +length; if (length > remaining) { length = remaining; } } encoding = String(encoding || 'utf8').toLowerCase(); var ret; switch (encoding) { case 'hex': ret = this.parent.hexWrite(string, this.offset + offset, length); break; case 'utf8': case 'utf-8': ret = this.parent.utf8Write(string, this.offset + offset, length); break; case 'ascii': ret = this.parent.asciiWrite(string, this.offset + offset, length); break; case 'binary': ret = this.parent.binaryWrite(string, this.offset + offset, length); break; case 'base64': // Warning: maxLength not taken into account in base64Write ret = this.parent.base64Write(string, this.offset + offset, length); break; case 'ucs2': case 'ucs-2': ret = this.parent.ucs2Write(string, this.offset + offset, length); break; default: throw new Error('Unknown encoding'); } Buffer._charsWritten = SlowBuffer._charsWritten; return ret; }; // toString(encoding, start=0, end=buffer.length) Buffer.prototype.toString = function(encoding, start, end) { encoding = String(encoding || 'utf8').toLowerCase(); if (typeof start == 'undefined' || start < 0) { start = 0; } else if (start > this.length) { start = this.length; } if (typeof end == 'undefined' || end > this.length) { end = this.length; } else if (end < 0) { end = 0; } start = start + this.offset; end = end + this.offset; switch (encoding) { case 'hex': return this.parent.hexSlice(start, end); case 'utf8': case 'utf-8': return this.parent.utf8Slice(start, end); case 'ascii': return this.parent.asciiSlice(start, end); case 'binary': return this.parent.binarySlice(start, end); case 'base64': return this.parent.base64Slice(start, end); case 'ucs2': case 'ucs-2': return this.parent.ucs2Slice(start, end); default: throw new Error('Unknown encoding'); } }; // byteLength Buffer.byteLength = SlowBuffer.byteLength; // fill(value, start=0, end=buffer.length) Buffer.prototype.fill = function fill(value, start, end) { value || (value = 0); start || (start = 0); end || (end = this.length); if (typeof value === 'string') { value = value.charCodeAt(0); } if (!(typeof value === 'number') || isNaN(value)) { throw new Error('value is not a number'); } if (end < start) throw new Error('end < start'); // Fill 0 bytes; we're done if (end === start) return 0; if (this.length == 0) return 0; if (start < 0 || start >= this.length) { throw new Error('start out of bounds'); } if (end < 0 || end > this.length) { throw new Error('end out of bounds'); } return this.parent.fill(value, start + this.offset, end + this.offset); }; // copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length) Buffer.prototype.copy = function(target, target_start, start, end) { var source = this; start || (start = 0); end || (end = this.length); target_start || (target_start = 0); if (end < start) throw new Error('sourceEnd < sourceStart'); // Copy 0 bytes; we're done if (end === start) return 0; if (target.length == 0 || source.length == 0) return 0; if (target_start < 0 || target_start >= target.length) { throw new Error('targetStart out of bounds'); } if (start < 0 || start >= source.length) { throw new Error('sourceStart out of bounds'); } if (end < 0 || end > source.length) { throw new Error('sourceEnd out of bounds'); } // Are we oob? if (end > this.length) { end = this.length; } if (target.length - target_start < end - start) { end = target.length - target_start + start; } return this.parent.copy(target.parent, target_start + target.offset, start + this.offset, end + this.offset); }; // slice(start, end) Buffer.prototype.slice = function(start, end) { if (end === undefined) end = this.length; if (end > this.length) throw new Error('oob'); if (start > end) throw new Error('oob'); return new Buffer(this.parent, end - start, +start + this.offset); }; // Legacy methods for backwards compatibility. Buffer.prototype.utf8Slice = function(start, end) { return this.toString('utf8', start, end); }; Buffer.prototype.binarySlice = function(start, end) { return this.toString('binary', start, end); }; Buffer.prototype.asciiSlice = function(start, end) { return this.toString('ascii', start, end); }; Buffer.prototype.utf8Write = function(string, offset) { return this.write(string, offset, 'utf8'); }; Buffer.prototype.binaryWrite = function(string, offset) { return this.write(string, offset, 'binary'); }; Buffer.prototype.asciiWrite = function(string, offset) { return this.write(string, offset, 'ascii'); }; Buffer.prototype.readUInt8 = function(offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to read beyond buffer length'); } return buffer.parent[buffer.offset + offset]; }; function readUInt16(buffer, offset, isBigEndian, noAssert) { var val = 0; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to read beyond buffer length'); } if (isBigEndian) { val = buffer.parent[buffer.offset + offset] << 8; val |= buffer.parent[buffer.offset + offset + 1]; } else { val = buffer.parent[buffer.offset + offset]; val |= buffer.parent[buffer.offset + offset + 1] << 8; } return val; } Buffer.prototype.readUInt16LE = function(offset, noAssert) { return readUInt16(this, offset, false, noAssert); }; Buffer.prototype.readUInt16BE = function(offset, noAssert) { return readUInt16(this, offset, true, noAssert); }; function readUInt32(buffer, offset, isBigEndian, noAssert) { var val = 0; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } if (isBigEndian) { val = buffer.parent[buffer.offset + offset + 1] << 16; val |= buffer.parent[buffer.offset + offset + 2] << 8; val |= buffer.parent[buffer.offset + offset + 3]; val = val + (buffer.parent[buffer.offset + offset] << 24 >>> 0); } else { val = buffer.parent[buffer.offset + offset + 2] << 16; val |= buffer.parent[buffer.offset + offset + 1] << 8; val |= buffer.parent[buffer.offset + offset]; val = val + (buffer.parent[buffer.offset + offset + 3] << 24 >>> 0); } return val; } Buffer.prototype.readUInt32LE = function(offset, noAssert) { return readUInt32(this, offset, false, noAssert); }; Buffer.prototype.readUInt32BE = function(offset, noAssert) { return readUInt32(this, offset, true, noAssert); }; /* * Signed integer types, yay team! A reminder on how two's complement actually * works. The first bit is the signed bit, i.e. tells us whether or not the * number should be positive or negative. If the two's complement value is * positive, then we're done, as it's equivalent to the unsigned representation. * * Now if the number is positive, you're pretty much done, you can just leverage * the unsigned translations and return those. Unfortunately, negative numbers * aren't quite that straightforward. * * At first glance, one might be inclined to use the traditional formula to * translate binary numbers between the positive and negative values in two's * complement. (Though it doesn't quite work for the most negative value) * Mainly: * - invert all the bits * - add one to the result * * Of course, this doesn't quite work in Javascript. Take for example the value * of -128. This could be represented in 16 bits (big-endian) as 0xff80. But of * course, Javascript will do the following: * * > ~0xff80 * -65409 * * Whoh there, Javascript, that's not quite right. But wait, according to * Javascript that's perfectly correct. When Javascript ends up seeing the * constant 0xff80, it has no notion that it is actually a signed number. It * assumes that we've input the unsigned value 0xff80. Thus, when it does the * binary negation, it casts it into a signed value, (positive 0xff80). Then * when you perform binary negation on that, it turns it into a negative number. * * Instead, we're going to have to use the following general formula, that works * in a rather Javascript friendly way. I'm glad we don't support this kind of * weird numbering scheme in the kernel. * * (BIT-MAX - (unsigned)val + 1) * -1 * * The astute observer, may think that this doesn't make sense for 8-bit numbers * (really it isn't necessary for them). However, when you get 16-bit numbers, * you do. Let's go back to our prior example and see how this will look: * * (0xffff - 0xff80 + 1) * -1 * (0x007f + 1) * -1 * (0x0080) * -1 */ Buffer.prototype.readInt8 = function(offset, noAssert) { var buffer = this; var neg; if (!noAssert) { assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to read beyond buffer length'); } neg = buffer.parent[buffer.offset + offset] & 0x80; if (!neg) { return (buffer.parent[buffer.offset + offset]); } return ((0xff - buffer.parent[buffer.offset + offset] + 1) * -1); }; function readInt16(buffer, offset, isBigEndian, noAssert) { var neg, val; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to read beyond buffer length'); } val = readUInt16(buffer, offset, isBigEndian, noAssert); neg = val & 0x8000; if (!neg) { return val; } return (0xffff - val + 1) * -1; } Buffer.prototype.readInt16LE = function(offset, noAssert) { return readInt16(this, offset, false, noAssert); }; Buffer.prototype.readInt16BE = function(offset, noAssert) { return readInt16(this, offset, true, noAssert); }; function readInt32(buffer, offset, isBigEndian, noAssert) { var neg, val; if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } val = readUInt32(buffer, offset, isBigEndian, noAssert); neg = val & 0x80000000; if (!neg) { return (val); } return (0xffffffff - val + 1) * -1; } Buffer.prototype.readInt32LE = function(offset, noAssert) { return readInt32(this, offset, false, noAssert); }; Buffer.prototype.readInt32BE = function(offset, noAssert) { return readInt32(this, offset, true, noAssert); }; function readFloat(buffer, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset + 3 < buffer.length, 'Trying to read beyond buffer length'); } return require('./buffer_ieee754').readIEEE754(buffer, offset, isBigEndian, 23, 4); } Buffer.prototype.readFloatLE = function(offset, noAssert) { return readFloat(this, offset, false, noAssert); }; Buffer.prototype.readFloatBE = function(offset, noAssert) { return readFloat(this, offset, true, noAssert); }; function readDouble(buffer, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset + 7 < buffer.length, 'Trying to read beyond buffer length'); } return require('./buffer_ieee754').readIEEE754(buffer, offset, isBigEndian, 52, 8); } Buffer.prototype.readDoubleLE = function(offset, noAssert) { return readDouble(this, offset, false, noAssert); }; Buffer.prototype.readDoubleBE = function(offset, noAssert) { return readDouble(this, offset, true, noAssert); }; /* * We have to make sure that the value is a valid integer. This means that it is * non-negative. It has no fractional component and that it does not exceed the * maximum allowed value. * * value The number to check for validity * * max The maximum value */ function verifuint(value, max) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value >= 0, 'specified a negative value for writing an unsigned value'); assert.ok(value <= max, 'value is larger than maximum value for type'); assert.ok(Math.floor(value) === value, 'value has a fractional component'); } Buffer.prototype.writeUInt8 = function(value, offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xff); } buffer.parent[buffer.offset + offset] = value; }; function writeUInt16(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xffff); } if (isBigEndian) { buffer.parent[buffer.offset + offset] = (value & 0xff00) >>> 8; buffer.parent[buffer.offset + offset + 1] = value & 0x00ff; } else { buffer.parent[buffer.offset + offset + 1] = (value & 0xff00) >>> 8; buffer.parent[buffer.offset + offset] = value & 0x00ff; } } Buffer.prototype.writeUInt16LE = function(value, offset, noAssert) { writeUInt16(this, value, offset, false, noAssert); }; Buffer.prototype.writeUInt16BE = function(value, offset, noAssert) { writeUInt16(this, value, offset, true, noAssert); }; function writeUInt32(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'trying to write beyond buffer length'); verifuint(value, 0xffffffff); } if (isBigEndian) { buffer.parent[buffer.offset + offset] = (value >>> 24) & 0xff; buffer.parent[buffer.offset + offset + 1] = (value >>> 16) & 0xff; buffer.parent[buffer.offset + offset + 2] = (value >>> 8) & 0xff; buffer.parent[buffer.offset + offset + 3] = value & 0xff; } else { buffer.parent[buffer.offset + offset + 3] = (value >>> 24) & 0xff; buffer.parent[buffer.offset + offset + 2] = (value >>> 16) & 0xff; buffer.parent[buffer.offset + offset + 1] = (value >>> 8) & 0xff; buffer.parent[buffer.offset + offset] = value & 0xff; } } Buffer.prototype.writeUInt32LE = function(value, offset, noAssert) { writeUInt32(this, value, offset, false, noAssert); }; Buffer.prototype.writeUInt32BE = function(value, offset, noAssert) { writeUInt32(this, value, offset, true, noAssert); }; /* * We now move onto our friends in the signed number category. Unlike unsigned * numbers, we're going to have to worry a bit more about how we put values into * arrays. Since we are only worrying about signed 32-bit values, we're in * slightly better shape. Unfortunately, we really can't do our favorite binary * & in this system. It really seems to do the wrong thing. For example: * * > -32 & 0xff * 224 * * What's happening above is really: 0xe0 & 0xff = 0xe0. However, the results of * this aren't treated as a signed number. Ultimately a bad thing. * * What we're going to want to do is basically create the unsigned equivalent of * our representation and pass that off to the wuint* functions. To do that * we're going to do the following: * * - if the value is positive * we can pass it directly off to the equivalent wuint * - if the value is negative * we do the following computation: * mb + val + 1, where * mb is the maximum unsigned value in that byte size * val is the Javascript negative integer * * * As a concrete value, take -128. In signed 16 bits this would be 0xff80. If * you do out the computations: * * 0xffff - 128 + 1 * 0xffff - 127 * 0xff80 * * You can then encode this value as the signed version. This is really rather * hacky, but it should work and get the job done which is our goal here. */ /* * A series of checks to make sure we actually have a signed 32-bit number */ function verifsint(value, max, min) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value <= max, 'value larger than maximum allowed value'); assert.ok(value >= min, 'value smaller than minimum allowed value'); assert.ok(Math.floor(value) === value, 'value has a fractional component'); } function verifIEEE754(value, max, min) { assert.ok(typeof (value) == 'number', 'cannot write a non-number as a number'); assert.ok(value <= max, 'value larger than maximum allowed value'); assert.ok(value >= min, 'value smaller than minimum allowed value'); } Buffer.prototype.writeInt8 = function(value, offset, noAssert) { var buffer = this; if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7f, -0x80); } if (value >= 0) { buffer.writeUInt8(value, offset, noAssert); } else { buffer.writeUInt8(0xff + value + 1, offset, noAssert); } }; function writeInt16(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 1 < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7fff, -0x8000); } if (value >= 0) { writeUInt16(buffer, value, offset, isBigEndian, noAssert); } else { writeUInt16(buffer, 0xffff + value + 1, offset, isBigEndian, noAssert); } } Buffer.prototype.writeInt16LE = function(value, offset, noAssert) { writeInt16(this, value, offset, false, noAssert); }; Buffer.prototype.writeInt16BE = function(value, offset, noAssert) { writeInt16(this, value, offset, true, noAssert); }; function writeInt32(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to write beyond buffer length'); verifsint(value, 0x7fffffff, -0x80000000); } if (value >= 0) { writeUInt32(buffer, value, offset, isBigEndian, noAssert); } else { writeUInt32(buffer, 0xffffffff + value + 1, offset, isBigEndian, noAssert); } } Buffer.prototype.writeInt32LE = function(value, offset, noAssert) { writeInt32(this, value, offset, false, noAssert); }; Buffer.prototype.writeInt32BE = function(value, offset, noAssert) { writeInt32(this, value, offset, true, noAssert); }; function writeFloat(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 3 < buffer.length, 'Trying to write beyond buffer length'); verifIEEE754(value, 3.4028234663852886e+38, -3.4028234663852886e+38); } require('./buffer_ieee754').writeIEEE754(buffer, value, offset, isBigEndian, 23, 4); } Buffer.prototype.writeFloatLE = function(value, offset, noAssert) { writeFloat(this, value, offset, false, noAssert); }; Buffer.prototype.writeFloatBE = function(value, offset, noAssert) { writeFloat(this, value, offset, true, noAssert); }; function writeDouble(buffer, value, offset, isBigEndian, noAssert) { if (!noAssert) { assert.ok(value !== undefined && value !== null, 'missing value'); assert.ok(typeof (isBigEndian) === 'boolean', 'missing or invalid endian'); assert.ok(offset !== undefined && offset !== null, 'missing offset'); assert.ok(offset + 7 < buffer.length, 'Trying to write beyond buffer length'); verifIEEE754(value, 1.7976931348623157E+308, -1.7976931348623157E+308); } require('./buffer_ieee754').writeIEEE754(buffer, value, offset, isBigEndian, 52, 8); } Buffer.prototype.writeDoubleLE = function(value, offset, noAssert) { writeDouble(this, value, offset, false, noAssert); }; Buffer.prototype.writeDoubleBE = function(value, offset, noAssert) { writeDouble(this, value, offset, true, noAssert); }; SlowBuffer.prototype.readUInt8 = Buffer.prototype.readUInt8; SlowBuffer.prototype.readUInt16LE = Buffer.prototype.readUInt16LE; SlowBuffer.prototype.readUInt16BE = Buffer.prototype.readUInt16BE; SlowBuffer.prototype.readUInt32LE = Buffer.prototype.readUInt32LE; SlowBuffer.prototype.readUInt32BE = Buffer.prototype.readUInt32BE; SlowBuffer.prototype.readInt8 = Buffer.prototype.readInt8; SlowBuffer.prototype.readInt16LE = Buffer.prototype.readInt16LE; SlowBuffer.prototype.readInt16BE = Buffer.prototype.readInt16BE; SlowBuffer.prototype.readInt32LE = Buffer.prototype.readInt32LE; SlowBuffer.prototype.readInt32BE = Buffer.prototype.readInt32BE; SlowBuffer.prototype.readFloatLE = Buffer.prototype.readFloatLE; SlowBuffer.prototype.readFloatBE = Buffer.prototype.readFloatBE; SlowBuffer.prototype.readDoubleLE = Buffer.prototype.readDoubleLE; SlowBuffer.prototype.readDoubleBE = Buffer.prototype.readDoubleBE; SlowBuffer.prototype.writeUInt8 = Buffer.prototype.writeUInt8; SlowBuffer.prototype.writeUInt16LE = Buffer.prototype.writeUInt16LE; SlowBuffer.prototype.writeUInt16BE = Buffer.prototype.writeUInt16BE; SlowBuffer.prototype.writeUInt32LE = Buffer.prototype.writeUInt32LE; SlowBuffer.prototype.writeUInt32BE = Buffer.prototype.writeUInt32BE; SlowBuffer.prototype.writeInt8 = Buffer.prototype.writeInt8; SlowBuffer.prototype.writeInt16LE = Buffer.prototype.writeInt16LE; SlowBuffer.prototype.writeInt16BE = Buffer.prototype.writeInt16BE; SlowBuffer.prototype.writeInt32LE = Buffer.prototype.writeInt32LE; SlowBuffer.prototype.writeInt32BE = Buffer.prototype.writeInt32BE; SlowBuffer.prototype.writeFloatLE = Buffer.prototype.writeFloatLE; SlowBuffer.prototype.writeFloatBE = Buffer.prototype.writeFloatBE; SlowBuffer.prototype.writeDoubleLE = Buffer.prototype.writeDoubleLE; SlowBuffer.prototype.writeDoubleBE = Buffer.prototype.writeDoubleBE; },{"assert":1,"./buffer_ieee754":8,"base64-js":9}],9:[function(require,module,exports){ (function (exports) { 'use strict'; var lookup = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'; function b64ToByteArray(b64) { var i, j, l, tmp, placeHolders, arr; if (b64.length % 4 > 0) { throw 'Invalid string. Length must be a multiple of 4'; } // the number of equal signs (place holders) // if there are two placeholders, than the two characters before it // represent one byte // if there is only one, then the three characters before it represent 2 bytes // this is just a cheap hack to not do indexOf twice placeHolders = b64.indexOf('='); placeHolders = placeHolders > 0 ? b64.length - placeHolders : 0; // base64 is 4/3 + up to two characters of the original data arr = [];//new Uint8Array(b64.length * 3 / 4 - placeHolders); // if there are placeholders, only get up to the last complete 4 chars l = placeHolders > 0 ? b64.length - 4 : b64.length; for (i = 0, j = 0; i < l; i += 4, j += 3) { tmp = (lookup.indexOf(b64[i]) << 18) | (lookup.indexOf(b64[i + 1]) << 12) | (lookup.indexOf(b64[i + 2]) << 6) | lookup.indexOf(b64[i + 3]); arr.push((tmp & 0xFF0000) >> 16); arr.push((tmp & 0xFF00) >> 8); arr.push(tmp & 0xFF); } if (placeHolders === 2) { tmp = (lookup.indexOf(b64[i]) << 2) | (lookup.indexOf(b64[i + 1]) >> 4); arr.push(tmp & 0xFF); } else if (placeHolders === 1) { tmp = (lookup.indexOf(b64[i]) << 10) | (lookup.indexOf(b64[i + 1]) << 4) | (lookup.indexOf(b64[i + 2]) >> 2); arr.push((tmp >> 8) & 0xFF); arr.push(tmp & 0xFF); } return arr; } function uint8ToBase64(uint8) { var i, extraBytes = uint8.length % 3, // if we have 1 byte left, pad 2 bytes output = "", temp, length; function tripletToBase64 (num) { return lookup[num >> 18 & 0x3F] + lookup[num >> 12 & 0x3F] + lookup[num >> 6 & 0x3F] + lookup[num & 0x3F]; }; // go through the array every three bytes, we'll deal with trailing stuff later for (i = 0, length = uint8.length - extraBytes; i < length; i += 3) { temp = (uint8[i] << 16) + (uint8[i + 1] << 8) + (uint8[i + 2]); output += tripletToBase64(temp); } // pad the end with zeros, but make sure to not forget the extra bytes switch (extraBytes) { case 1: temp = uint8[uint8.length - 1]; output += lookup[temp >> 2]; output += lookup[(temp << 4) & 0x3F]; output += '=='; break; case 2: temp = (uint8[uint8.length - 2] << 8) + (uint8[uint8.length - 1]); output += lookup[temp >> 10]; output += lookup[(temp >> 4) & 0x3F]; output += lookup[(temp << 2) & 0x3F]; output += '='; break; } return output; } module.exports.toByteArray = b64ToByteArray; module.exports.fromByteArray = uint8ToBase64; }()); },{}]},{},[]) ;;module.exports=require("buffer-browserify") },{}],30:[function(require,module,exports){ // shim for using process in browser var process = module.exports = {}; process.nextTick = (function () { var canSetImmediate = typeof window !== 'undefined' && window.setImmediate; var canPost = typeof window !== 'undefined' && window.postMessage && window.addEventListener ; if (canSetImmediate) { return function (f) { return window.setImmediate(f) }; } if (canPost) { var queue = []; window.addEventListener('message', function (ev) { var source = ev.source; if ((source === window || source === null) && ev.data === 'process-tick') { ev.stopPropagation(); if (queue.length > 0) { var fn = queue.shift(); fn(); } } }, true); return function nextTick(fn) { queue.push(fn); window.postMessage('process-tick', '*'); }; } return function nextTick(fn) { setTimeout(fn, 0); }; })(); process.title = 'browser'; process.browser = true; process.env = {}; process.argv = []; process.binding = function (name) { throw new Error('process.binding is not supported'); } // TODO(shtylman) process.cwd = function () { return '/' }; process.chdir = function (dir) { throw new Error('process.chdir is not supported'); }; },{}],31:[function(require,module,exports){ module.exports = require('./lib/urlsafe-base64'); },{"./lib/urlsafe-base64":32}],32:[function(require,module,exports){ var Buffer=require("__browserify_Buffer").Buffer;/*! * urlsafe-base64 */ /** * Module Dependencies */ // None yet! /** * Library version. */ exports.version = '1.0.0'; /** * .encode * * return an encoded Buffer as URL Safe Base64 * * Note: This function encodes to the RFC 4648 Spec where '+' is encoded * as '-' and '/' is encoded as '_'. The padding character '=' is * removed. * * @param {Buffer} buffer * @return {String} * @api public */ exports.encode = function encode(buffer) { return buffer.toString('base64') .replace(/\+/g, '-') // Convert '+' to '-' .replace(/\//g, '_') // Convert '/' to '_' .replace(/=+$/, ''); // Remove ending '=' }; /** * .decode * * return an decoded URL Safe Base64 as Buffer * * @param {String} * @return {Buffer} * @api public */ exports.decode = function decode(base64) { // Add removed at end '=' base64 += Array(5 - base64.length % 4).join('='); base64 = base64 .replace(/\-/g, '+') // Convert '-' to '+' .replace(/\_/g, '/'); // Convert '_' to '/' return new Buffer(base64, 'base64'); }; /** * .validate * * Validates a string if it is URL Safe Base64 encoded. * * @param {String} * @return {Boolean} * @api public */ exports.validate = function validate(base64) { return /^[A-Za-z0-9\-_]+$/.test(base64); }; },{"__browserify_Buffer":29}]},{},[1]) (1) }); ;