You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
changedetection.io/changedetectionio/image_diff.py

41 lines
1.5 KiB

from skimage.metrics import structural_similarity as compare_ssim
import argparse
import imutils
import cv2
# From https://www.pyimagesearch.com/2017/06/19/image-difference-with-opencv-and-python/
def render_diff(fpath_imageA, fpath_imageB):
imageA = cv2.imread(fpath_imageA)
imageB = cv2.imread(fpath_imageB)
# convert the images to grayscale
grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)
# compute the Structural Similarity Index (SSIM) between the two
# images, ensuring that the difference image is returned
(score, diff) = compare_ssim(grayA, grayB, full=True)
diff = (diff * 255).astype("uint8")
print("SSIM: {}".format(score))
# threshold the difference image, followed by finding contours to
# obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# compute the bounding box of the contour and then draw the
# bounding box on both input images to represent where the two
# images differ
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 1)
cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 1)
#return cv2.imencode('.jpg', imageB)[1].tobytes()
return cv2.imencode('.jpg', imageA)[1].tobytes()