parent
e73721a3f0
commit
0761984bcd
@ -0,0 +1,41 @@
|
|||||||
|
# import the necessary packages
|
||||||
|
from skimage.metrics import structural_similarity as compare_ssim
|
||||||
|
import argparse
|
||||||
|
import imutils
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
# From https://www.pyimagesearch.com/2017/06/19/image-difference-with-opencv-and-python/
|
||||||
|
def render_diff(fpath_imageA, fpath_imageB):
|
||||||
|
|
||||||
|
imageA = cv2.imread(fpath_imageA)
|
||||||
|
imageB = cv2.imread(fpath_imageB)
|
||||||
|
|
||||||
|
# convert the images to grayscale
|
||||||
|
grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
|
||||||
|
grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
# compute the Structural Similarity Index (SSIM) between the two
|
||||||
|
# images, ensuring that the difference image is returned
|
||||||
|
(score, diff) = compare_ssim(grayA, grayB, full=True)
|
||||||
|
diff = (diff * 255).astype("uint8")
|
||||||
|
print("SSIM: {}".format(score))
|
||||||
|
|
||||||
|
# threshold the difference image, followed by finding contours to
|
||||||
|
# obtain the regions of the two input images that differ
|
||||||
|
thresh = cv2.threshold(diff, 0, 255,
|
||||||
|
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
|
||||||
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
|
||||||
|
cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
cnts = imutils.grab_contours(cnts)
|
||||||
|
|
||||||
|
# loop over the contours
|
||||||
|
for c in cnts:
|
||||||
|
# compute the bounding box of the contour and then draw the
|
||||||
|
# bounding box on both input images to represent where the two
|
||||||
|
# images differ
|
||||||
|
(x, y, w, h) = cv2.boundingRect(c)
|
||||||
|
cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
||||||
|
cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
||||||
|
|
||||||
|
#return cv2.imencode('.jpg', imageB)[1].tobytes()
|
||||||
|
return cv2.imencode('.jpg', imageB)[1].tobytes()
|
Loading…
Reference in new issue